Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Orientational Transitions in Magnetically Compensated Liquid-Crystal Suspensions of Ferromagnetic Carbon Nanotubes

https://doi.org/10.21869/2223-1528-2023-13-3-182-198

Abstract

Purpose of research is to study the influence of ferromagnetic carbon nanotubes on orientational transitions in magnetically compensated liquid-crystal suspensions.
Methods. The problem was solved in the framework of the continuum theory. By minimizing the Helmholtz free energy functional, a system of Lagrange-Euler equations is obtained that determines the equilibrium dependences of the orientation angles of liquid crystal and impurity ferromagnetic carbon nanotubes directors, as well as the concentration distributions of the dispersed phase of the suspension as a function of the transverse coordinate, material parameters, and magnetic field strength.
Results. It is shown that in the presence of an external magnetic field, a liquid-crystal suspension of ferromagnetic carbon nanotubes can be in a non-uniform phase (angular phase) and two uniform phases (planar and homeotropic phases). Expressions for the threshold fields of transitions between coexisting orientational phases are obtained analytically as functions of the material parameters of the composite. Diagrams of the orientational phases of the suspension are plotted.
Conclusion. As a result of the research, it was shown that the addition of low concentrations of ferromagnetic carbon nanotubes can significantly reduce the threshold of the magnetic Fréedericksz transition compared to a pure liquid crystal, which is important for various technical applications. The obtained analytical formulas for the threshold fields of transitions between different orientational phases can be used to determine the anchoring energy and material parameters of suspensions of ferromagnetic carbon nanotubes in a liquid crystal.

About the Authors

I. A. Chupeev
Perm State University
Russian Federation

Ilya A. Chupeev, Post-Graduate Student of Physics of Phase Transitions Department 

15 Bukireva Str., Perm 614990, Russian Federation 



D. A. Petrov
Perm State University
Russian Federation

Danil A. Petrov, Candidate of Sciences (Physics and Mathematics), Associate Professor, Associate Professor of Physics of Phase Transitions Department,  Leading Researcher of the Laboratory of Magnetic Disperse Media 

15 Bukireva Str., Perm 614990, Russian Federation 



References

1. Kobayashi S., Miyama T., Akiyama H., eds. Development of liquid crystal displays and related improvements to their performances. Proceedings of the Japan Academy, Series B, 2022, vol. 98, no. 9, рр. 493–516. https://doi.org/10.2183/pjab.98.025

2. Tran A., Boott C. E., MacLachlan M. J. Understanding the self‐assembly of cellulose nanocrystals - toward chiral photonic materials. Advanced Materials, 2020, vol. 32, no. 41, pp. 1905876. https://doi.org/10.1002/adma.201905876

3. Ma L. L., Li C. Y., Pan J. T., eds. Self-assembled liquid crystal architectures for soft matter photonics. Light: Science & Applications, 2022, vol. 11, no. 1, pp. 270. https://doi.org/10.1038/s41377-022-00930-5

4. Prakash J., Varshney D., Chauhan S., eds. Progress in radiations induced engineering of liquid crystals properties for high - performance applications. Physics Reports, 2023, vol. 1015, pp. 1–23. https://doi.org/10.1016/j.physrep.2023.03.003

5. Shen W., Li G. Recent progress in liquid crystal‐based smart windows: materials, structures, and design. Laser & Photonics Reviews, 2023, vol. 17, no. 1, pp. 2200207. https://doi.org/10.1002/lpor.202200207

6. Shen W., Zhang H., Miao., Ye Z. Recent progress in functional dye‐doped liquid crystal devices. Advanced Functional Materials, 2023, vol. 33, no. 6, рр. 2210664. https://doi.org/10.1002/adfm.202210664

7. Zhang K., Yu H. Chiroptical studies on nanoparticle-liquid crystal composites. Liquid Crystals. 2023, vol. 50, no. 4, pp. 572–583. https://doi.org/10.1080/02678292.2023.2188617

8. Yulin C., Ma P., Gui S. Cubic and hexagonal liquid crystals as drug delivery systems. BioMed Research International, 2014, vol. 2014, pp. 815981. https://doi.org/10.1155/2014/815981

9. Silvestrine A. P., Caron A. L., Viegas J., Praça F. G., Bentley M. L. Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opinion on Drug Delivery, 2020, vol. 17, no. 12, pp. 1781–1805. https://doi.org/10.1080/17425247.2020.1819979

10. Smalyukh I. I. Liquid crystal colloids. Annual Review of Condensed Matter Physics, 2018, vol. 9, pp. 207–226. https://doi.org/10.1146/annurev-conmatphys-033117-054102

11. Chang C., Zhao Y., Liu Y., An L. Liquid crystallinity of carbon nanotubes. RSC advances, 2016, vol. 8, no. 28, pp. 15780–15795. https://doi.org/10.1039/C8RA00879E

12. Singh S. Impact of dispersion of nanoscale particles on the properties of nematic liquid crystals. Crystals, 2019, vol. 9, no. 9, pp. 475. https://doi.org/10.3390/cryst9090475

13. Shen Y., Dierking I. Perspectives in liquid-crystal-aided nanotechnology and nanoscience. Applied Sciences, 2019, vol. 9, no. 12, pp. 2512. https://doi.org/10.3390/app9122512

14. Dierking I. From colloids in liquid crystals to colloidal liquid crystals. Liquid Crystals, 2019, vol. 46, no. 13/14, pp. 2057–2074. https://doi.org/10.1080/02678292.2019.1641755

15. Prakash J., Khan S., Chauhan S., Biradar A. M. Metal oxide-nanoparticles and liquid crystal composites: A review of recent progress. Journal of Molecular Liquids, 2020, vol. 297, pp. 112052. https://doi.org/10.1016/j.molliq.2019.112052

16. Hähsler M., Appel I., Behren S. Magnetic hybrid materials in liquid crystals. Physical Sciences Reviews, 2020, vol. 7, no. 9, pp. 1009–1032. https://doi.org/10.1515/psr-2019-0090

17. Kumar A., Singh D. P., Singh G. Recent progress and future perspectives on carbon-nanomaterialdispersed liquid crystal composites. Journal of Physics D: Applied Physics, 2021, vol. 55, no. 8, pp. 083002. https://doi.org/10.1088/1361-6463/ac2ced

18. Draude A. P., Dierking I. Thermotropic liquid crystals with low-dimensional carbon allotropes. Nano Express, 2021, vol. 2, no. 1, pp. 012002. https://doi.org/10.1088/2632-959X/abdf2d

19. Rathinavel S., Priyadharshini K., Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Materials Science and Engineering: B, 2021, vol. 268, pp. 115095. https://doi.org/10.1016/j.mseb.2021.115095

20. Nemati A., Querciagrossa L., Callison C., eds. Effects of shape and solute-solvent compatibility on the efficacy of chirality transfer: Nanoshapes in nematics. Science Advances, 2022, vol. 8, no. 4, pp. eabl4385. https://doi.org/10.1126/sciadv.abl4385

21. Petrescu E., Cirtoaje C. Dynamic behavior of a nematic liquid crystal with added carbon nanotubes in an electric field. Beilstein journal of nanotechnology, 2018, vol. 9, no. 1, pp. 223–241. https://doi.org/10.3762/bjnano.9.25

22. Cirtoaje C., Petrescu E. The influence of single-walled carbon nanotubes on the dynamic properties of nematic liquid crystals in magnetic field. Materials, 2019, vol. 12, no. 24, pp. 4031. https://doi.org/10.3390/ma12244031

23. Petrescu E., Cirtoaje C. Electric properties of multiwalled carbon nanotubes dispersed in liquid crystals and their influence on freedericksz transitions. Nanomaterials, 2022, vol. 12, no. 7, pp. 1119. https://doi.org/10.3390/nano12071119

24. Stewart I.W. The static and dynamic continuum theory of liquid crystals: a mathematical introduction. London, New York, Taylor & Francis Publ., 2004, pp. 360. https://doi.org/10.1201/9781315272580

25. Zakhlevnykh A. N., Petrov D. A., Skokov P. K. Vliyanie ferromagnitnykh uglerodnykh nanotrubok na magnitnye perekhody v zhidkikh kristallakh [Influence of ferromagnetic carbon nanotubes on magnetic transitions in liquid crystals]. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki = Journal of Experimental and Theoretical Physics, 2018, vol. 154, no. 4(10), pp. 897–908. https://doi.org/10.1134/S0044451018100188

26. Bury P., Veveričík M., Kopčanský P., eds. Structural changes in liquid crystals doped with functionalized carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures. 2018, vol. 103, pp. 1386–9477. https://doi.org/10.1016/j.physe.2018.05.008

27. Kopčanský P., Gdovinová V., Burylov S., eds. The influence of goethite nanorods on structural transitions in liquid crystal 6CHBT. Journal of Magnetism and Magnetic Materials, 2018, vol. 459, pp. 16–32. https://doi.org/10.1016/j.jmmm.2017.12.086

28. Burylov S., Petrov D., Lackova V., eds. Ferromagnetic and antiferromagnetic liquid crystal suspensions: Experiment and theory. Journal of Molecular Liquids, 2021, vol. 321, pp. 114467. https://doi.org/10.1016/j.molliq.2020.114467

29. Bury P., Veveričík M., Černobila F., eds. Influence of goethite nanorods on structural changes and transitions in nematic liquid crystal E7. Crystals, 2023, vol. 13, no. 2, pp. 162. https://doi.org/10.3390/cryst13020162

30. Zakhlevnykh A. N., Petrov D. A. Weak coupling effects and re-entrant transitions in ferronematic liquid crystals. Journal of Molecular Liquids, 2014, vol. 198, pp. 223–233. https://doi.org/10.1016/j.molliq.2014.06.028

31. Mertelj A., Lisjak D. Ferromagnetic nematic liquid crystals. Liquid Crystals Reviews, 2017, vol. 5, no. 1, pp. 1–33. https://doi.org/10.1080/21680396.2017.1304835

32. Chausov D. N., Kirilov A. D., Belyaev V. V. Zhidkokristallicheskie nanokompozity, legirovannye nanochastitsami redkozemel'nykh elementov [Liquid crystal nanocomposites doped with rare earth elements]. Zhidkie kristally i ikh prakticheskoe ispol'zovanie = Liquid Crystals and their Application, 2020, vol. 20, no. 2, pp. 6–22. https://doi.org/10.18083/LCAppl.2020.2.6


Review

For citations:


Chupeev I.A., Petrov D.A. Orientational Transitions in Magnetically Compensated Liquid-Crystal Suspensions of Ferromagnetic Carbon Nanotubes. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(3):182-198. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-3-182-198

Views: 213


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)