Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

About the Differential Sweep Method for Measuring of Ferrocolloids Magnetization Curves

https://doi.org/10.21869/2223-1528-2023-13-3-89-104

Abstract

Purpose. Justification and description of a laboratory method for measuring static magnetization curves specialized for ferrocolloids.
Methods. The measurement method is based on the paramagnetism of magnetic colloids and the quasi-linear response of their magnetisation to small perturbations of the external magnetic field. To obtain the magnetisation curve, the studying ferrocolloid sample is placed in a constant homogeneous field of a laboratory electromagnet with an iron core. By low-frequency modulation of the current in the coils of the electromagnet, a co-directional perturbation is applied to the constant field. Information about the response of the sample to the external field perturbation - the differential magnetic susceptibility of ferrocolloid - is extracted by electrical measurements. These measurements are carried out using a classical compensation device of two counter-connected wire coils, one of which contains the investigated sample. Conducting (sweeping) the measurements in a wide range of applied fields allows to collect a sequence of experimental values of differential susceptibility from which the desired magnetisation curve is reconstructed by numerical integration.
Results. The experimental setup for measuring the magnetisation curves of ferrocolloids was assembled. A theoretical description of the compensating electrical measuring device of the setup was proposed. The adjustment of the electrical scheme was carried out within several series of calibration experiments aimed at establishing the material parameters of the setup that were unknown from the theory. On the example of ferrocolloid of the type “magnetite - kerosene – oleic acid” both the process of obtaining primary experimental data and their subsequent processing, including the procedure of numerical integration, were demonstrated. It is established that the use of integration methods of a higher accuracy allows reducing the number of required experimental points and accelerating the measurement process without reducing the quality of the obtained curves.
Conclusion: The method applicable for measuring the magnetisation curves of ferrocolloids by differential sweeping is described, substantiated and implemented using laboratory equipment.

About the Authors

M. A. Koskov
Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences
Russian Federation

Mikhail A. Koskov, Junior Researcher

Researcher ID: AAN-7092-2020 

Koroleva Str. 1, Perm 614013, Russian Federation 



A. V. Lebedev
Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences
Russian Federation

Aleksandr V. Lebedev, Doctor of Sciences (Physics and Mathematics), Senior Researcher 

Koroleva Str. 1, Perm 614013, Russian Federation 



A. S. Ivanov
Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of Sciences
Russian Federation

Aleksey S. Ivanov, Candidate of Sciences (Physics and Mathematics), Associate Professor, Head of the Laboratory “Dynamics of dispersed systems”

Researcher ID: M-9999-2016 

Koroleva Str. 1, Perm 614013, Russian Federation 



References

1. Rosensweig R. E. Ferrogidrodinamika [Ferrohydrodynamics]. Moscow, Mir Publ., 1985. 356 р.

2. Bibik E. E., Lavrov I. S. Sposob polucheniya ferrozhidkosti [Method of ferrofluid production]. Patent USSR, no. 457666. 1975.

3. Shliomis M. I. Magnitnye zhidkosti [Magnetic fluids]. Uspekhi fizicheskikh nauk = Successes of physical sciences, 1974, vol. 122, no. 2, pp. 427–458. https://doi.org/10.1070/PU1974v017n02ABEH004332

4. Saikin M. S. Germetizatory na osnove magnitnoi nanozhidkosti dlya valov khimicheskikh reaktorov [Nanomagnetic Liquids Sealers for Chemical Reactor Shafts]. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta = Bulletin of Ivanovo State Power Engineering University, 2010, vol. 4, pp. 44–47.

5. Vlasov A. M., Kazakov Yu. B., Poletaev V. A. Magnitozhidkostnoe uplotnenie vala elektrodvigatelya [Magnetic fluid motor shaft seal]. Patent RF, no. 2721400, 2020.

6. Kazakov Yu. B., Filippov V. A. Calculation of the performance of the electromagnetic magnetic fluid separator non-magnetic materials. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 950, pp. 012003. https://doi.org/10.1088/1757-899X/950/1/012003

7. Lian W., Xyan Y., Li Q. Design method of automatic energy transport devices based on the thermomagnetic effect of magnetic fluids. Int. J. Heat and Mass Transfer., 2009, vol. 52, pp. 5451–5458. https://doi.org/10.1016/j.ijheatmasstransfer.2008.04.031

8. Varma V. B., Cheekati S. K., Pattanaik M. S., Ramanujan R. V. A magnetic nanofluid device for excellent passive cooling of light emitting diodes. Energy Reports, 2022, vol. 8, рр. 7401–7419. https://doi.org/10.1016/j.egyr.2022.05.237

9. Lagutkina D. Yu., Saikin M. S. Magnitozhidkostnoe ustroistvo dlya opredeleniya ugla naklona [Ferrofluid inclination sensor]. Patent RF, no. 167814, 2017.

10. Saikin M. S., Fedoseeva V. P. Ustroistvo dlya izmereniya vibratsii [Vibration sensor]. Patent RF, no. 208162, 2021.

11. Pshenichnikov A. F., Silaev V. A., Avdeeva L. A. Magnitogranulometricheskii analiz ferrokolloidov [Magnetogranulometric analysis of ferrocolloids]. Pribory i metody izmereniya fizicheskih parametrov ferrokoloidov [Instruments and methods for measuring the physical parameters of ferrocoloids]. Sverdlovsk, URO AN SSSR, 1991, pp. 3–8.

12. Ivanov A. S., Pshenichnikov A. F. Rassloenie magnitnoi zhidkosti v gradientnom magnitnom pole [Stratification of a magnetic fluid in a gradient magnetic field]. Vestnik Permskogo universiteta. Seriya: Fizika = Bulletin of Perm University. Physics, 2009, vol. 1(27), pp. 45–48.

13. Monapatra D. K., Camp P. J., Philip J. Influence of size polydispersity on magnetic field tunable structures in magnetic nanofluids containing superparamagnetic nanoparticles. Nanoscale Advances, 2021, vol. 3, pp. 3573–3592. https://doi.org/10.1039/dlna00131k

14. Lebedev A. V. O neprigodnosti vibratsionnogo magnitometra dlya izmereniya krivykh namagnichivaniya magnitnykh zhidkostei [On the unsuitability of a vibrating sample magnetometer for measuring the magnetization curves of magnetic fluids]. Vestnik Permskogo universiteta. Fizika = Bulletin of Perm University. Physics, 2022, vol. 2, pp. 20–25. https://doi.org/10.17072/1994-3598-2022-2-20-25

15. Lahtina E. V., Pshenichnikov A. F. Dispersiya magnitnoi vospriimchivosti i mikrostruktura magnitnoi zhidkosti [Dispersion of magnetic susceptibility and microstructure of magnetic fluid]. Vestnik Permskogo universiteta. Fizika = Bulletin of Perm University. Physics, 2005, vol. 1, pp. 85–89.

16. Pshenichnikov A. F., Lebedev A. V. Magnitnaya vospriimchivost' kontsentrirovannykh ferrokolloidov [Magnetic susceptibility of concentrated ferrocolloids]. Kolloidnyj zhurnal = Colloid Journal, 2005, vol. 67(2), pp. 1–13.

17. Pshenichnikov A. F. Fizicheskie svoistva i nanostruktura magnitnykh zhidkostei [Physical properties and nanostructure of magnetic fluids]. Vestnik Permskogo nauchnogo centra UrO RAN = Bulletin of the Perm Scientific Center of the Ural Branch of the Russian Academy of Sciences, 2009, vol. 2, pp. 12–17.

18. Lebedev A. V. Izmenenie relaksatsionnykh spektrov magnitnoi zhidkosti v podmagnichivayushchem pole [Changes in the relaxation spectra of a magnetic fluid in a magnetizing field]. Vestnik Permskogo universiteta. Fizika = Bulletin of Perm University. Physics, 2019, vol. 2, pp. 8–15. https://doi.org/10.17072/1994-3598-2019-2-08-15

19. Pshenichnikov A. F. Most vzaimnoi induktivnosti dlya analiza magnitnykh zhidkostei [Mutual inductance bridge for magnetic fluid analysis]. Pribory i tekhnika eksperimenta = Instruments and Experimental Techniques, 2007, vol. 4, pp. 88–93.

20. Bozorth R. M. Ferromagnetizm [Ferromagnetism]. Moscow, Izd-vo inostr. lit, 1956. 784 p.

21. Pshenichnikov A. F., Mekhonoshin V. V. Equilibrium magnetization and microstructure of the system of superparamagnetic interacting particles: numerical simulation. J. Magnetism and Magnetic Materials, 2000, vol. 213, pp. 357-369. https://doi.org/10.1016/S0304-853(99)00829-X

22. Ryapolov P. A., Polunin V. M., Bashtovoi V. G., Shabanova I. A., Karpova G. V., Sokolov E. A., Vasil'eva A. O. Magnitoforez v magnitnoi zhidkosti v neodnorodnom pole kol'tsevogo magnita [Magnetophoresis in Magnetic Fluid]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologie, 2020, vol. 10(4), pp. 92–107.


Review

For citations:


Koskov M.A., Lebedev A.V., Ivanov A.S. About the Differential Sweep Method for Measuring of Ferrocolloids Magnetization Curves. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(3):89-104. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-3-89-104

Views: 191


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)