Formation of Cluster Systems in Chaotic Condensed Media
https://doi.org/10.21869/2223-1528-2023-13-2-164-176
Abstract
Purpose. The study of cluster formation in a system of chaotically moving and interacting particles taking into account the Efimov effect and the "golden" section.
Methods. Methods of mathematical modeling, quantum mechanics, a model of solid spheres, and a cluster model were used.
Results. Within the framework of the proposed work, it is noted that in a three-particle system of particles, it is possible to form their spatial configuration in the form of a "golden" triangle, and in the case of an excited state of two particles, the third particle is far enough away from the other two, it is this configuration that corresponds to the conditions for the occurrence of the Efimov effect in a three-particle system.
Based on the mathematical formalism of the description of self-organization processes in the work, it is shown that in chaotic environments within the framework of the Efimov model, with the involvement of the "golden" section in the mutual arrangement of three interacting particles, it is possible to form disk-shaped clusters containing a "magic" number of particles. In the structure of these clusters, the formation of quantum-dimensional regions in the form of a torus is possible. The parameters of such areas are defined.
Conclusion. The described model of the formation and decay of disk-shaped clusters, taking into account the Efimov effect and the "golden" section rule, allows us, without resorting to a complex solution of equations in the three-body problem, to obtain important relations following from strict theories. The proposed approach implies the possibility of self-organization of clusters and the formation of quantum-dimensional regions in their structure, for example, in the form of a torus with a potential well, capable of capturing charged particles and determining their energy spectrum, as well as explaining the appearance of spectral bands in the IR spectra of substances.
The proposed approach may be of practical importance, for example, for predicting the IR spectra of liquids, the presence of quantum dots in liquids with a wide spectrum of excitation from UV to IR radiation.
About the Authors
G. А. MelnikovRussian Federation
Gennady A. Melnikov, Cand. of Sci. (Physics and Mathematics), Senior Researcher of the Departments of Nanotechnology, Microelectron- ics, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
N. М. Ignatenko
Russian Federation
Ignatenko Nikolay M., Dr. of Sci. (Physics and Mathematics), Associate Professor, Professor of the Department of Nanotechnology, Microelectronics, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
V. V. Suchilkin
Russian Federation
Vadim V. Suchilkin, Senior Lecturer of the Departments of Nanotechnology, Microelectronics, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
А. S. Gromkov
Russian Federation
Andrey S. Gromkov, Post-Graduate Student of the Departments of Nanotechnology, Microelectronics, General and Applied Physics
50 Let Oktyabrya Str. 94, Kursk 305040
References
1. Efimov V. I. Slabosvyazannyye sostoyaniya trokh rezonansno vzaimodeystvuyushchikh chastits [Loosely coupled states of three resonantly interacting particles]. Yadernaya fizika = Nuclear Physics, 1970, vol. 12, pp. 1080–1090.
2. Efimov V. Energy levels of three resonantly interacting particles. Nucl. Phys. A, 1973, vol. 210, pp. 157–188.
3. Naidon P., Endo S. Efimov physics: a review. Reports on Progress in Physics, 2017, vol. 80, no. 5, pp. 056001. https://doi.org/10.1088/1361-6633/aa50e8
4. Skornyakov G. V., Ter-Martirosyan K. A. Zadacha trekh tel pri korotkodeystvuyushchikh silakh [The problem of three bodies with short-acting forces]. Zhurnal eksperimental'noy i teoreticheskoy fiziki = Journal of experimental and theoretical physics, 1956, vol. 31, is. 5, pp. 775– 790.
5. Faddeev L. D. Teoriya rasseyaniya dlya sistemy iz trekh chastits [Scattering theory for a system of three particles]. Zhurnal eksperimental'noy i teoreticheskoy fiziki = Journal of experimental and theoretical physics, 1960, vol. 39, is. 5, pp. 1459–1467.
6. Makarov K. A., Melezhik V. V., Motovilov A. K. Tochechnyye vzaimodeystviya v zadache trekh kvantovykh chastits s vnutrenney strukturoy [Point interactions in the problem of three quantum particles with an internal structure]. Teoreticheskaya i matematicheskaya fizika = Theoretical and mathematical physics, 1995, vol. 102, no. 2, pp. 258–282.
7. Nikolis G., Prigozhin I. Samoorganizatsiya v neravnovesnykh sistemakh. Ot dissipativnykh struktur k uporyadochennosti cherez fluktuatsii [Self-organization in nonequilibrium systems. From dissipative structures to orderliness through fluctuations]. Moscow, Mir Publ., 1979. 512 p.
8. Haken G. Sinergetika: iyerarkhii neustoychivostey v samoorganizuyushchikhsya sistemakh i ustroystvakh [Synergetics: hierarchies of instabilities in self-organizing systems and devices]. Moscow, Mir Publ., 1985. 419 p.
9. Prigozhin I. R. Vvedeniye v termodinamiku neobratimykh protsessov [Introduction to the thermodynamics of irreversible processes]. Izhevsk, Regular and chaotic dynamics Publ., 2001. 160 p.
10. Klimontovich Yu. L. Vvedeniye v fiziku otkrytykh sistem [Introduction to the physics of open systems]. Moscow, Janus-K Publ., 2002. 284 p.
11. Manin Yu. I. Matematika kak metafora [Mathematics as a metaphor]. Moscow, MCCME Publ., 2010. 424 p.
12. Ilyushin G. D. Modelirovaniye protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh [Modeling of self-organization processes in crystal-forming systems]. Moscow, Editorial URSS Publ., 2003. 376 p.
13. Isaeva V. V. Samoorganizatsiya biologicheskikh sistem [Self-organization of biological systems]. Izvestiya RAN. Seriya Biologicheskaya = Proceedings of the Russian Academy of Sciences. Series Biological, 2012, no. 2, pp. 144–153.
14. Goncharov A. V. Protsessy rosta klasterov v klasternoy plazme [Processes of cluster growth in cluster plasma]. Fiziko-khimicheskaya kinetika v gazovoy dinamike = Physico-chemical kinetics in gas dynamics, 2008, vol. 6. Available at: https://chemphys.edu.ru/media/published/2008-01-25-001.pdf (accessed 03.13.2023).
15. Volynsky A. L., Bazhenov S. L., Bakeev N. F. Neustoychivost' i samoorganizatsiya v polimernykh sistemakh [Instability and self-organization in polymer systems]. Vysokomolekulyarnyye soyedineniya. Seriya C = High-molecular compounds. Series C, 2002, vol. 44, no. 12, pp. 2352–2374.
16. Mark P., Taylor J., Lipson E. G. A site–site Born–Green–Yvon equation for hard sphere dimmers. J. Chem. Phys., 1994, vol. 100, pp. 518–527. https://doi.org/10.1063/1.466966
17. Pozdneev S. A. Mnogochastichnaya teoriya vozniknoveniya rezonansnogo vzaimodeystviya, privodyashchego k novomu tipu khimicheskoy svyazi [Multiparticle theory of the occurrence of resonant interaction leading to a new type of chemical bond]. Kratkiye soobshcheniya po fizike. FIAN = Brief reports on physics. PhIAS, 2003, no. 5, pp. 3–19.
18. Lakaev S. N. O beskonechnom chisle trekhchastichnykh svyazannykh sostoyanij sistemy trekh kvantovykh reshetchatykh chastits [On the infinite number of three-particle bound states of a system of three quantum lattice particles]. Teoreticheskaya i matematicheskaya fizika = Theoretical and mathematical physics, 1991, vol. 89, no. 1, pp. 94–104.
19. Khanna F. C., Malbouisson A. P. C., Malbouisson J. M. C., Santana A. E. Quantum field theory on toroidal topology: algebraic structure and applications. Physics Reports, 2014, vol. 539 (3), pp. 135−224. https://doi.org/10.1016/j.physrep.2014.02.002
20. Melnikov G. A., Suchilkin V. V., Ignatenko N. M., Krasnykh P. A. Wandering quantum dots (WQDs) in the structure of disordered condensed matter. 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). Tomsk, IEEE, 2020, pp. 998−1003. https://doi.org/10.1109/EFRE47760.2020.9241961
21. Grisenti R. E., Schollkopf W., Toennies J. P., Hegerfeldt G. C., Kohler T., Stoll M. Determination of the bond length and binding energy of the helium dimer by diffraction from a transmission grating. Phys. Rev. Lett., 2000, vol. 85 (11), pp. 2284–2287. https://doi.org/10.1103/ PhysRevLett.85.2284.
22. Chiu Y.-P., Huang L.-W., Wei C.-M., Hang C.-S., Tsong T.-T. Magic numbers of atoms in surface-supported planar clusters. Phys. Rev. Lett., 2006, vol. 97 (16), pp. 165504. https://doi.org/ 10.1103/PhysRevLett.97.165504
23. Knight W. D., Clemenger K., de Heer W. A., Saunders W. A., Chou M. Y., Cohen M. L. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett., 1984, vol. 52 (24), pp. 2141–2143. https://doi.org/10.1103/PhysRevLett.52.2141
24. Mie G. [The kinetic theory of monatomic solids]. Annals of Physics, 1903, vol. 316 (8), pp. 657−697. (In Germany) https://doi.org/10.1002/andp.19033160802
25. Kratzer A. [The ultra-red rotational spectra of hydrogen halides]. Journal of Physics, 1920, vol. 3 (5), pp. 289−307. (In Germany) https://doi.org/10.1007/BF01327754
26. Dunham J. L. The energy levels of a rotating vibrator. Phys. Rev., 1932, vol. 41 (6), pp. 721–731. https://doi.org/10.1103/PhysRev.41.721
27. Melnikov G. A., Ignatenko N. M., Gromkov A. S. Samoorganizatsiya malykh klasternykh sistem v ramkakh modeli Yefimova [Self-organization of small cluster systems within the framework of the Efimov model]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika = Bulletin of the Voronezh State University. Series: Physics. Mathematics, 2022, no. 3, pp. 5–18.
28. Melnikov G. A., Ignatenko N. M., Boldyrev K. N., Manzhos O. A., Gromkov A. S. Kharakternyye osobennosti nizkochastotnoy oblasti infrakrasnykh spektrov i klasternaya model' stroyeniya zhidkostey [Characteristic features of the low-frequency region of infrared spectra and a cluster model of the structure of liquids]. Optika i spektroskopiya = Optics and spectroscopy, 2023, vol. 131, is. 3, pp. 361–369.
29. Melnikov G. A. Clusters of Fibonacci in the structure of condensed medium. Izvestiya vuzov. Fizika = Proceedings of Universities. Physics, 2018, vol. 61, no. 9-2 (729), pp. 207–210.
Review
For citations:
Melnikov G.А., Ignatenko N.М., Suchilkin V.V., Gromkov А.S. Formation of Cluster Systems in Chaotic Condensed Media. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(2):164-176. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-2-164-176