Shape and Stability of a Local Heat-Transfer Magnetofluid Coating on a Plate
https://doi.org/10.21869/2223-1528-2023-13-2-150-163
Abstract
Purpose. Investigate the shape and stability of a magnetic fluid coating on a flat surface in a non-uniform magnetic field of a permanent magnet.
Methods. Magnetic fluids based on transformer oil MMT-44 and MMT-21 with saturation magnetization of 43.8 and 21.2 kA/m, respectively, were used in the experiments. A magnetic-fluid coating was formed on the surface of horizontal and vertical non-magnetic plates in a locally inhomogeneous magnetic field of permanent magnets. The source of the inhomogeneous magnetic field is a system of two rectangular magnets. The size of the magnetic system is 40×12×10 mm. The maximum values of the magnetic field strength and gradient reach 180 kA/m and 8∙104 kA/m2, respectively. The shape and stability of a sessile and suspended magnetic fluid coating were studied for various plate orientations.
Results. The shape and stability of the magnetic fluid coating on horizontal and vertical plates are studied. The experimental dependences of the height and length of the coating on the volume of the magnetic fluid are established. It is established that the coating can have a certain maximum volume. When this volume is exceeded, the liquid spreads over the surface of the plate or a part of the liquid volume is separated. The limiting volume of the coating is determined by the magnetic characteristics of the ferrofluid and the magnetic field.
Conclusion. The possibility of forming a sessile and suspended local magnetic fluid coating on horizontal and vertical plates is established. The height and length of the magnetic fluid coating on the plate depend on the volume of the magnetic fluid, as well as on the characteristics of the magnetic system and the magnetization of the magnetic fluid. The results obtained can be used in the formation of magnetic fluid coatings of cooled sections of heated surfaces.
About the Authors
A. А. ZaliatsilaBelarus
Alexandra A. Zaliatsila, Undergraduate of the UNESCO Chair "Energy Saving and Renewable Energy Sources"
65 Nezavisimosti Ave., Minsk 220013
А. G. Reks
Belarus
Alexander G. Reks, Dr. of Sci. (Physics and Ma- thematics), Professor, Professor of the UNESCO Chair "Energy Saving and Renewable Energy Sources"
65 Nezavisimosti Ave., Minsk 220013
References
1. Kutateladze S. S., Nakoryakov V. E. Teplomassoobmen i volny v gazozhidkostnykh sistemakh [Heat and mass transfer and waves in gas-liquid systems]. Novosibirsk, Nauka Publ., Sib. otd-nie, 1984. 302 p.
2. Isachenko V. P., Osipova V. A., Sukomel A. S. Teploperedacha [Heat transfer]. 5th ed., ster. Moscow, ARIS Publ., 2014. 417 p.
3. Rosensweig R. E. Ferrohydrodynamics. Cambridge, USA, Cambridge University Press, 1985. 344 p.
4. Bashtovoy V. G., Berkovskiy B. M., Vislovich A. N. Vvedenie v termomekhaniku magnitnykh zhidkostei [Introduction to Thermomechanics of Magnetic Fluids]. New York, USA, Hemisphere Publishing Corporation, 1988. 216 p.
5. Berkovskiy B. M., Medvedev V. F., Krakov M. S. Magnitnye zhidkosti [Magnetic Fluids]. Moscow, Khimiya Publ., 1993. 243 p.
6. Magnetic fluids and Applications Handbook; editor-in-chief: B. Berkovski; ed. V. Bashtovoi. New York, USA, Begell House Inc. Publ., 1996. 851 p.
7. Reks A. G. Nekotoryye voprosy mekhaniki magnitozhidkostnykh sistem so svobodnoy poverkhnost'yu [Some questions of mechanics of magnetofluidic systems with a free surface]. Minsk, Belarusian National Technical Univ. Publ., 2005. 256 p.
8. Bashtovoi V., Reks A., Taits E., Foiguel R. Nonlinear waves on the magnetic fluid surface. J. Magnetism and Magnetic Materials, 1987, vol. 65, pp. 321–323.
9. Bashtovoi V. G., Krakov M. S., Reks A. G. Neustoichivost' ploskogo sloya magnitnoi zhidkosti v zakriticheskoi oblasti magnitnogo polya [Instability of a flat layer of magnetic liquid for supercritical magnetic fields]. Magnitnaya gidrodinamika = Magnetohydrodynamics, 1985, vol. 21, no. 1, pp. 14–18.
10. Bashtovoi V. G., Volkov Yu. A., Volkova N. E., Reks A. G., Taits E. M., Chernobay V. A. Sposob regulirovaniya teploobmena [Method for regulating heat transfer]. A.S. USSR, no. 1472746, 1989.
11. Bashtovoi V. G., Krakov M. S., Taits E. M. Upravlenie teploobmenom v sistemakh s granitsei razdela magnitnoi i nemagnitnoi zhidkostei [Controlling the exchange of heat in systems with a boundary of separation between magnetic and nonmagnetic fluids]. Magnitnaya gidrodinamika = Magnetohydrodynamics, 1989, vol. 25, no. 4. pp. 465–470.
12. Bashtovoi V. G., Volkova O. Yu., Reks A. G. Vliyanie orientatsii magnitnogo polya na protsess teploperenosa pri kipenii magnitnykh zhidkostei [The effect of magnetic-field orientation on the heat-transfer process when magnetic fluids are brought to a boil]. Magnitnaya gidrodinamika = Magnetohydrodynamics, 1992, vol. 28, no. 2, pp. 126–129.
13. Bashtovoi V., Pogirnitskaya S., Reks A., Volkova O. Controlled heat transfer in twocomponent magnetofluid systems. J. Magnetism and Magnetic Materials, 1993, vol. 122, pp. 309– 311.
14. Bashtovoi V., Chernobai V., Nguyen Quyet Thang. Experimental study of heat transfer control in rectangular channel with magnetofluid coating. J. Magnetism and Magnetic Materials, 1993, vol. 122, pp. 294–296.
15. Ageev V. A., Balyberdin V. V., Veprik I. Yu. Konvektsiya magnitnykh zhidkostei v neodnorodnykh magnitnykh polyakh [Magnetic-fluid convection in a nonuniform magnetic field]. Magnitnaya gidrodinamika = Magnetohygrodynamics, 1990, vol. 26, no. 2, pp. 184–188.
16. Krakov M. S., Nikiforov I. V., Kamiyama S. Three-dimensional thermomagnetic convection in a cubic cavity in the presence of an external uniform magnetic field. Magnetohydrodynamics, 2004. vol. 40. no. 3, pp. 285–296.
17. Koskov M. Technical framework for studying thermomagnetic convection in an extended closed loop. Magnetohydrodynamics, 2022, vol. 58, no. 3, pp. 267–274.
18. Behrle R., Lenski H. Active temperature differential control. Patent US, no. 5135048, 1992.
19. Baev A. R., Bashtovoi V. G., Konovalov G. E., Prokhorenko P. P., Dezhkunov N. V. Sposob sozdaniya akusticheskogo kontakta pri ul'trazvukovykh izmereniyakh [Method for creating acoustic contact during ultrasonic measurements]. A.S. USSR, no. 697916, 1979.
20. Dubrovin N. E., Dyupovkin N. I., Mitkin Yu. A., Orlov D. V. Kommutatsionnoe ustroistvo [Switching device]. A.S. USSR, no. 904009, 1982.
21. Kordelyuk A. S., Krakov M. S. Vliyanie formy magnitozhidkostnogo pokrytiya na gidravlicheskoe soprotivlenie kruglykh trub [The effect of the shape of a magnetofluid coating on the hydraulic resistance of circular tubes]. Magnitnaya gidrodinamika = Magnetohygrodynamics, 1989, vol. 25, no. 4, pp. 512–516.
22. Bashtovoi V., Reks A., Baev A., Al-Jhaish Taha Malik Mansoor. Topological instability of semi-bounded magnetic fluid drop under influence of magnetic and ultrasound fields. J. Magnetism and Magnetic Materials, 2017, vol. 431, pp. 42–45. http://dx.doi.org/10.1016/ j.jmmm.2016.09.055
23. Bushuyeva K. A., Kostarev K. G., Shmyrova A. I. Deformatsiya kapli ferrozhidkosti, lezhashchei na zhidkoi podlozhke, v odnorodnom vertikal'nom magnitnom pole [Deformation of a ferrofluid droplet lying on a liquid substrate in a uniform vertical magnetic field]. Konvektivnyye techeniya = Magnitnaya gidrodinamika, 2015, no. 7, pp. 143–157.
24. Suloyeva L. V., Bashtovoi V. G., Reks A. G., Motsar A. A., Kuzhir P. P. Sposob polucheniya magnitnoy zhidkosti [Method of obtaining magnetic fluid]. Patent BY, no. 18260, 2014.
Review
For citations:
Zaliatsila A.А., Reks А.G. Shape and Stability of a Local Heat-Transfer Magnetofluid Coating on a Plate. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(2):150-163. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-2-150-163