Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Formation of Nanocomposite Structures under Laser Irradiation λ = 1.064 µm DVD-R Coated with Aluminum Foil

https://doi.org/10.21869/2223-1528-2023-13-2-120-135

Abstract

Purpose. Obtaining, characterization and mathematical description of atomic force microscopic images of 1D-dimensional whisker-like nanocomposite structures formed under the conditions of high-intensity laser processing using.Formation of polycarbonate with inner thin layers of Al, semiconductor metals Si, Sb, Te, Ge, and ZnS and SiO2 compounds in a DVD-R-5 disc covered with aluminum foil.
Methods. Applied pulsed laser radiation for laser processing of DVD-R-5 was used. The methods of confocal, atomic force and scanning electron microscopy to study microand nanostructuring after laser processing of DVD-R-5 patterns were used. The direct and inverse Fourier transforms atomic force images were carried out. Analysis of solutions to the heat balance equation as applied to the results of laser processing was performed.
Results. Under high-speed exposure to laser radiation (TEM01 or TEM10 modes) on a DVD-R-5 sample coated with aluminum foil, VNS were detected and studied. With the help of direct and inverse Fourier transforms on atomic force images of the surface after laser processing, the periodicity of the formed VNS was confirmed. It is shown that the process of DVD-R-5 laser processing is adiabatic, the propagation velocity of the melting wave front exceeds the sonic one in polycarbonate. The conclusion about the formation of VNS due to self-focusing and filamentation of laser radiation in the reflected diffracting beams of each of the mode components is substantiated.
Conclusion. Under conditions of high-intensity laser processing by repetitively pulsed laser radiation with the TEM01 or TEM10 modes, 1D-dimensional VNSs are formed with a thickness at the base of up to 0.5 μm and a height of more than 1 μm, the composition of which can include both conductors, semiconductors, and their compounds. The resulting WNSs have a highly developed ordered surface structure, which may indicate that their application is promising.

About the Authors

G. P. Kopytov
K. G. Razumovsky Moscow State University of Technologies and Management
Russian Federation

Gennady P. Kopytov, Dr. of Sci. (Physics and Mathematics), Professor, Head of the Department of Physics

73 Zemlyanoy val Str., Moscow 109004



A. Yu. Stavtsev
K. G. Razumovsky Moscow State University of Technologies and Management
Russian Federation

Alexei Yu. Stavtsev, Senior Lecturer of the Department of Physics

73 Zemlyanoy val Str., Moscow 109004



A. P. Kuzmenko
Southwest State University
Russian Federation

Aleksandr P. Kuzmenko, Dr. of Sci. (Physics and Mathematics), Professor of the Department of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



A. I. Zhakin
Southwest State University
Russian Federation

Anatoly I. Zhakin, Dr. of Sci. (Physics and Mathe- matics), Professor of the Department of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya Str. 94, Kursk 305040



V. V. Filippov
Lipetsk State Pedagogical University named after P. P. Semenov-Tyan-Shansky
Russian Federation

Vladimir V. Filippov, Dr. of Sci. (Physics and Mathematics), Associate Professor, Professor of the Department of Mathematics and Physics of the Institute of Natural, Mathematical and Technical Sciences

42 Lenina Str., Lipetsk 398020



Yu. A. Neruchev
Kursk State University
Russian Federation

Yury A. Neruchev, Dr. of Sci. (Physics and Mathematics), Professor of the Department of Physics and Nanotechnology, Scientific Supervisor of the Research Center for Condensed Matter Physics

33 Radishcheva Str., Kursk 305000



References

1. Aksenov V. P., Zhurkin B. G. Obrazovanie periodicheskoi struktury pri vozdeistvii moshchnogo kogerentnogo izlucheniya na poverkhnost' poluprovodnikov [Formation of a periodic structure under the influence of powerful coherent radiation on the surface of semiconductors]. Doklady AN SSSR = Reports of the USSR Academy of Sciences, 1982, vol. 265, nо. 6. pp. 1365– 1366.

2. Smirnov N. A., Kudryashov S. I., Ionin A. A. Rol' protyazhennogo filamentatsionnogo fokusa pri ablyatsii poverkhnosti kremniya v vodnoi srede ul'trakorotkimi lazernymi impul'sami [The role of an extended filament focus in the ablation of a silicon surface in an aqueous medium by ultrashort laser pulses]. Zhurnal eksperimental'noi i teoreticheskoi fiziki = Journal of Experimental and Theoretical Physics, 2022, vol. 162, no. 1 (7), pp. 55–59.

3. Grigoropoulos C. P. Laser synthesis and fictionalization of nanostructures. International Journal of Extreme Manufacturing, 2019, vol. 1, pp. 012002. https://doi.org/10.1088/26317990/ab0eca

4. Kudryashov S. I., Lyon K., Allen S. D. Near-field thermal radiative transfer and thermo acoustic effects from vapor plumes produced by pulsed CO2 laser ablation of bulk water. Journal of Applied Physics, 2006, vol. 100(12), pp. 124908. http://dx.doi.org/10.1063/1.2402388

5. Zohuri B. Laser surface processing. Thermal effects of high power laser energy on materials. Springer Cham, 2021, pp. 331–362. https://doi.org/10.1007/978-3-030-63064-5_6.

6. Honma T. Laser-induced crystal growth of nonlinear optical crystal on the glass surface. Journal of the Ceramic Society of Japan, 2010, pp. 71–76. https://doi.org/10.2109/jcersj2.118.71

7. Golosov E. V., Emelyanov V. I., Ionin A. A., Kolobov Yu. R., Kudryashov S. I., Ligachev A. E., Novoselov Yu. N., Seleznev L. V., Sinitsyn D. V. Femtosekundnaya zapis' subvolnovykh odnomernykh kvaziperiodicheskikh nanostruktur na poverkhnosti titana [Femtosecond recording of subwavelength one-dimensional quasi-periodic nanostructures on a titanium surface]. Pis'ma v Journal eksperimental'noi i teoreticheskoi fiziki = JETP Letters, 2009, vol. 90, is. 2, pp. 116–120.

8. Golosov E. V., Emelyanov V. I., Ionin A. A., Kolobov Yu. R., Kudryashov S. I., Ligachev A. E., Novoselov Yu. N., Seleznev L. V., Sinitsyn D. V. Modifikatsiya poverkhnosti titana impul'snym lazernym izlucheniem femtosekundnoi dlitel'nosti [Modification of the titanium surface by femtosecond pulsed laser radiation]. Fizika i khimiya obrabotki materialov = Physics and chemistry of material processing, 2010, no. 2, pp. 10–14.

9. Qibiao Yang, Yang Chen, Zhihuai Lv, Lie Chen, eds. Nanosecond laser surface processing of AlN ceramics. Journal of Materials Science, 2019, vol. 54(6), рр. 13874–13882. https://doi.org/10.1007/s10853-019-03888-9.76

10. Sotskov V. A. O yavleniyakh samoorganizatsii v elektrofizike makrosistem [On the phenomena of self-organization in the electrophysics of macrosystems]. Zhurnal tekhnicheskoi fiziki = Journal of Technical Physics, 2009, vol. 79, no. 8, рр. 129–132.

11. Osmanov O. M. Naglyadnoe modelirovanie fraktal'nykh struktur [Visual modeling of fractal structures]. Uspekhi fizicheskikh nauk = Successes of physical sciences, 1995, vol. 165, no. 9, pp. 1095–1097.

12. Maximovskii S., Turyanskiy A., Bogonosov K., Gizha S., Senkov V., Pirshin I. Shattuckite synthesis and the pattern formation by the scanning laser beam. Tecnol. Metal. Mater. Miner., 2016, vol. 13, no. 3, pp. 248–251. http://dx.doi.org/10.4322/2176-1523.0988

13. Kiyotaka Miura, Kazuyuki Hirao, Yasuhiko Shimotsuma. Nanowire formation under femtosecond laser radiation in liquid. Nanowires – Fundamental Research; ed. by Abbas Hashim. Intech Open, 2011. https://doi.org/10.5772/17720

14. Vasileiadis T., Dracopoulos V., Kollia M., Yannopoulos S. N. Laser-Assisted Growth of t-Te Nanotubes and their Controlled Photo-induced Unzipping to ultrathin core-Te/sheath-TeO2. Nanowires. Scientific Reports, 2013, vol. 1209, рр. 1209. https://doi.org/10.1038/srep01209(2013)

15. Shishkin I. I., Samusev K. B., Rybin M. V., Limonov M. V., Kishvar Yu., Gajdukevijchute A., Kiyan R. V., Chichkov V. N. Kvazistekloobraznaya nanostruktura, izgotovlennaya metodom lazernoi nanolitografii [Quasi-glass-like nanostructure made by laser nanolithography]. Fizika tverdogo tela = Solid State Physics, 2012, vol. 54, no. 10, pp. 1852–1857.

16. Zharov A. A., Zharova N. A. Svetoindutsirovannye difraktsionnye reshetki na metapoverkhnostyakh na osnove zhidkogo metamateriala [Light-induced diffraction gratings on metasurfaces based on liquid metamaterial]. Zhurnal eksperimental'noi i teoreticheskoi fiziki = Journal of Experimental and Theoretical Physics, 2022, vol. 162, no. 6 (12). pp. 844–849.

17. Maximovsky S. N., Stavtsev A. U., Nedelkin V. I. Interaction of pulsed laser radiation with a polycarbonate-based composite. Bulletin of the Lebedev Physics Institute, 2017, vol. 44, no. 12, pp. 374–379. https://doi.org/10.3103/S1068335617120089

18. Maksimovsky S. N., Stavtsev A. Yu., Ovsyannikova A. V. Growth of coherent whiskers on polycarbonate substrates by laser radiation. Journal of Russian Laser Research, 2019, vol. 40, nо. 2, pp. 197–204. https://doi.org/10.1007/s10946-019-09789-1

19. Askaryan G. A., Moroz E. P. Davlenie pri isparenii veshchestva v luche radiatsii [The pressure during the evaporation of a substance in a beam of radiation]. Zhurnal eksperimental'noi i teoreticheskoi fiziki = Journal of Experimental and Theoretical Physics, 1962, vol. 43, no. 6, pp. 2319–2320.

20. Askaryan G. A. Effekt samofokusirovki [Self-focusing effect]. Uspekhi fizicheskikh nauk = Successes of Physical Sciences, 1973, vol. 111, is. 2, pp. 249–260.

21. Lugovoi V. N., Prokhorov A. M. Teoriya rasprostraneniya moshchnogo lazernogo izlucheniya v nelineinoi srede [Theory of high-power laser radiation propagation in a nonlinear medium]. Uspekhi fizicheskikh nauk = Successes of physical sciences, 1973, vol. 111, is. 2, pp. 203– 247.

22. Townes C. H. Self trapping of optical beams. Physical Review Letters, 1964, vol. 13, is. 15, p. 479.

23. Chao R., Gaimar E., Townes K. Samofokusirovka lucha opticheskogo mazera [Selffocusing of an optical maser beam]. Deistvie lazernogo izlucheniya. Sbornik statei [The action of laser radiation. Collection of articles]. Moscow, Mir Publ., 1968. 187 p.

24. Vinogradov B. A., Gavrilenko V. N., Libenson M. N. Teoreticheskie osnovy vozdeistviya lazernogo izlucheniya na materialy [Theoretical foundations of the impact of laser radiation on materials]. Blagoveshchensk, Blagoveshchensk Polytech, Institute Publ., 1993. 344 p.


Review

For citations:


Kopytov G.P., Stavtsev A.Yu., Kuzmenko A.P., Zhakin A.I., Filippov V.V., Neruchev Yu.A. Formation of Nanocomposite Structures under Laser Irradiation λ = 1.064 µm DVD-R Coated with Aluminum Foil. Proceedings of the Southwest State University. Series: Engineering and Technology. 2023;13(2):120-135. (In Russ.) https://doi.org/10.21869/2223-1528-2023-13-2-120-135

Views: 220


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)