Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Influence of the Structure and Parameters of a Magnetic Fluid on Magnetophoresis in a thin Layer

Abstract

The purpose of the work is to study in external gradient magnetic fields the regularities of magnetophoresis processes in magnetic fluids in thin optically transparent layers and their relationship with the structuring and parameters of the magnetic fluid system.  

Metods. To study the influence of the structure and parameters of a magnetic fluid on the dynamics of the magnetophoresis process, a set of experimental installations was created for the long-term effect of inhomogeneous magnetic fields of various configurations. As the images, the images of magnetic fluid with different dispersed composition were studied, including non-centrifuged ones containing large magnetic particles.

Results. In magnetic fluid samples with different dispersed composition, the phenomenon of magnetophoresis in a thin layer in inhomogeneous magnets of various configurations, created by an annular permanent magnet, as well as an axial magnetic system based on unipolar magnets, has been investigated. Based on the phenomenological equations of magnetophoresis and Brownian diffusion, a theoretical interpretation of the dynamics of the magnetophoresis process in magnetic fluid systems in an inhomogeneous magnetic field is proposed.

Conclusion. It was found that for a sample containing larger magnetic nanoparticles, the magnetophoresis process proceeds 5 times faster. Methods and installations for the study of magnetophoresis in magnetic fluids in inhomogeneous magnetic fields of various configurations have been developed, which are applicable to assess the size of magnetic particles and the stability of magnetic fluids, to study the processes of separation and structure formation in them under prolonged exposure to high-gradient magnetic fields. 

About the Authors

P. A. Ryapolov
Southwest State University
Russian Federation

Petr A. Ryapolov, Сand. of Sci. (Physics and Mathematics), Associate Professor, Dean of the Faculty of Science

50 Let Oktyabrya str. 94, Kursk 305040



V. M. Polunin
Southwest State University
Russian Federation

Vyacheslav M. Polunin, Dr. of Sci. (Physics  and Mathematics), Professor, Professor of the Department of Nanotechnology, General  and Applied Physics

50 Let Oktyabrya str. 94, Kursk 305040



V. G. Bashtovoi
Belarusian National Technical University
Belarus

Victor G. Bashtovoi, Dr. of Sci. (Physics  and Mathematics), Professor, Head of the UNESCO Chair "Energy Saving and Renewable Energy Sources"

65 Independence aven., Minsk 220013



E. A. Sokolov
Southwest State University
Russian Federation

Evgeny A. Sokolov, Post-Graduate Student  of the Department of Nanotechnology, General and Applied Physics

50 Let Oktyabrya str. 94, Kursk 305040



E. V. Shel’deshova
Southwest State University
Russian Federation

Elena V. Shel’deshova, Post-Graduate Student  of the Department of Nanotechnology, General  and Applied Physics

50 Let Oktyabrya str. 94, Kursk 305040



References

1. Naletova V. A., Shkel I. A. Sila, deistvuyushchaya na telo so storony magnitnoi zhidkosti v neodnorodnom magnitnom pole [Force acting on the body from the side of a magnetic fluid in an inhomogeneous magnetic field]. Magnitnaya gidrodinamika = Magnetic hydrodynamics, 1987, vol. 23, no. 2, рр. 67–70.

2. Lukashevich M. V., Naletova V. A., Tsurikov S. N. Pereraspredelenie kontsentratsii magnitnoi zhidkosti v neodnorodnom magnitnom pole [Redistribution of the concentration of magnetic fluid in an inhomogeneous magnetic field]. Magnitnaya gidrodinamika = Magnetic hydrodynamics, 1988, vol. 24, no. 3, рр. 64–69.

3. Bashtovoi V. G., Polevikov V. K., Suprun A. E., Stroots A. V., Beresnev S. A. Influence of Brownian diffusion on the statics of magnetic fluid. Magnetohydrodynamics, 2007, vol. 43, no. 1, рр. 17–25.

4. Bashtovoi V. G., Polevikov V. K., Suprun A. E., Stroots A. V., Beresnev S. A. The effect of magnetophoresis and Brownian diffusion on the levitation of bodies in a magnetic fluid. Magnetohydrodynamics, 2008, vol. 44, no. 2, рр. 121–126.

5. Kazakov Yu. B., Morozov N. A., Starodomsky Yu. I., Perminov S. M. Germetizatory na osnove nanodispersnykh magnitnykh zhidkostei i ikh modelirovanie [Hermetic seals based on nanodispersed magnetic fluids and their modeling]; ed. by Yu. B. Kazakov. Ivanovo, Ivanovo st. power engineering Univ. named after V. I. Lenin, 2010. 184 p.

6. Buevich Yu. A., Zubarev A. Yu., Ivanov A. O. Brounovskaya diffuziya v kontsen-trirovannykh ferrokolloidakh [Brownian diffusion in concentrated ferrocolloids]. Magnit-naya gidrodinamika = Magnetic hydrodynamics,1989, vol. 25, no. 2, рр. 39–43.

7. Morozov K. I. The translational and rotational diffusion of colloidal ferroparticles. Journal of magnetism and magnetic materials, 1993, vol. 122, no. 1-3, рр. 98–101.

8. Pshenichnikov A. F., Elfimova E. A. Influence of interparticle interactions on diffusion processes in magnetic fluids. Physics Procedia, 2010, vol. 9, рр. 101–104.

9. Pshenichnikov A. F., Ivanov A. S. Magnetophoresis of particles and aggregates in concentrated magnetic fluids. Physical Review E, 2012, vol. 86, no. 5, рр. 051401.

10. Ivanov A. S., Pshenichnikov A. F. Magnetophoresis and diffusion of colloidal particles in a thin layer of magnetic fluids. Journal of Magnetism and Magnetic Materials, 2010, vol. 322, no. 17, рр. 2575–2580.

11. Erin K. V. Ob izmenenii raspredeleniya chastits i agregatov po razmeram pri razbavlenii magnitnykh zhidkostei [About the change in the size distribution of particles and aggregates during dilution of magnetic liquids]. Kolloidnyi zhurnal = Colloid journal, 2017, vol. 79, no. 1, рр. 32–37.

12. Zhu T., Cheng R., Liu Y., He J., Mao L. Combining positive and negative magnetophoreses to separate particles of different magnetic properties. Microfluidics and nanofluidics, 2014, vol. 17, no. 6, рр. 973–982.

13. Zhao W., Cheng R., Miller J. R., Mao L. Label‐free microfluidic manipulation of particles and cells in magnetic liquids. Advanced functional materials, 2016, vol. 26, no. 22, рр. 3916–3932.

14. Leong S., Ahmad S. Z., Low S. C., Camacho J., Faraudo J., Lim J. Unified view of magnetic nanoparticle separation under magnetophoresis. Langmuir, 2020, vol. 36, no. 28, рр. 8033–8055.

15. Luo L., He Y. Magnetically driven microfluidics for isolation of circulating tumor cells. Cancer Medicine, 2020, vol. 9, рр. 4207–4231.

16. Xu Y., Zhang Z., Su Z., Zhou X., Han X., Liu Q. Continuous microfluidic purification of DNA using magnetophoresis. Micromachines, 2020, vol. 11, no. 2, рр. 187.

17. Xu C., Sun S. Superparamagnetic nanoparticles as targeted probes for diagnostic and therapeutic applications. Dalton Transactions, 2009, vol. 29, рр. 5583–5591.

18. Bloch F., Cugat O., Meunier G., Toussaint J. C. Innovating approaches to the generation of intense magnetic fields: Design and optimization of a 4 Tesla permanent magnet flux source. IEEE transactions on magnetics, 1998, vol. 34, no. 5, рр. 2465–2468.

19. Polunin V. M., Sheldeshova E. V., Ryapolov P. A., Drevolyuk N. E., Churaev A. A., Kuzko A. V. Dinamika tsilindra magnitnoi zhidkosti v neodnorodnom magnitnom pole [Dynamics of a magnetic fluid cylinder in an inhomogeneous magnetic field]. Izvestiya YugoZapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2020, vol. 10, no. 3, рр. 20–31.

20. Ryapolov P. A., Polunin V. M., Bashtovoy V. G., Shabanova I. A., Karpova G. V., Sokolov E. A., Vasilyeva A. O. Magnitoforez v magnitnoi zhidkosti v neodnorodnom pole kol'tsevogo magnita [Magnetophoresis in a magnetic fluid in an inhomogeneous field of a ring magnet]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2020, vol. 10, no. 4, рр. 92–107.

21. Usadel K. D., Storozhenko A., Arefyev I., Nádasi H., Trittel T., Stannarius R., Veit P., Eremin A. Frequency-dependent conversion of the torque of a rotating magnetic field on a ferrofluid confined in a spherical cavity. Soft matter, 2019, vol. 15, no. 44, рр. 9018–9030.

22. López-López M., De Vicente T. J., Bossis G., González-Caballero F., Durán J. D. G. Preparation of stable magnetorheological fluids based on extremely bimodal iron–magnetite suspensions. Journal of materials research, 2005, vol. 20, no. 4, рр. 874–881.

23. Rosensweig R. E. Magnetorheological particle clouds. Journal of Magnetism and Magnetic Materials, 2019, vol. 479, рр. 301–306.


Review

For citations:


Ryapolov P.A., Polunin V.M., Bashtovoi V.G., Sokolov E.A., Shel’deshova E.V. Influence of the Structure and Parameters of a Magnetic Fluid on Magnetophoresis in a thin Layer. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(1):77-92. (In Russ.)

Views: 101


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)