Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Study of Antioxidant Properties of Ablated Cerium Dioxide Nanoparticles in the Oxidative Reaction of Fenton

Abstract

Purpose of the study. Investigation of the antioxidant properties of ablated cerium dioxide nanoparticles under conditions of oxidative degradation of the organic dye methylene blue during the Fenton reaction, depending on their size and structural-phase characteristics.

Methods. Characterization of ablated cerium dioxide nanoparticles using transmission electron microscopy equipped with an energy Ω-filter and a scanning HAADF detector; examination in the visible and ultraviolet range of the absorption spectra of samples using an optical spectrophotometer; study of the antioxidant activity of ablated nanoparticles in the Fenton oxidative reaction using the example of the organic dye methylene blue depending on the content and size composition of cerium dioxide nanoparticles.

Results. Cerium dioxide nanoparticles with pronounced antioxidant properties have been obtained by laser ablation. With an increase in the content of CeO2 nanoparticles, the antioxidant properties of a colloidal solution based on them increase. The dependences of the antioxidant activity of cerium dioxide nanoparticles on their dimensional and structural characteristics have been determined.

Conclusion. A new method for obtaining nanodispersed particles of cerium oxide enriched with functional structural defects is proposed. Cerium dioxide nanoparticles, ablated by pulsed laser radiation, are new nanomaterials that are antioxidants capable of inactivating reactive oxygen species in oxidative processes such as the Fenton reaction.

About the Authors

M. A. Pugachevsky
Southwest State University
Russian Federation

Maksim A. Pugachevsky, Leading Researcher of the Regional Center of Nanotechnology

50 Let Oktyabrya str. 94, Kursk 305040



V. A. Mamontov
Southwest State University
Russian Federation

Vladimir A. Mamontov, Undergraduate of the Department of the of Nanotechnology and Engineering Physics

50 Let Oktyabrya str. 94, Kursk 305040



A. P. Kuzmenko
Southwest State University
Russian Federation

Alexander P. Kuzmenko, Dr. of Sci. (Physics and Mathematics), Professor, Director  of the Regional Center for Nanotechnology

50 Let Oktyabrya str. 94, Kursk 305040



Yu.  A. Neruchev
Kursk State University
Russian Federation

Yurii A. Neruchev, Dr. of Sci. (Physics and Mathematics), Professor of the Department of Physics and Nanotechnology

33 Radishcheva str., Kursk 305000



References

1. Aneggi E., Leitenburg C. de, Boaro M., Fornasiero P., Trovarell A. Cerium Oxide (CeO₂): synthesis, properties and applications; ed. by S. Scirè, L. Palmisano. Elsevier Science, 2020, рр. 45–108, 109–167.

2. Vazirov R. A., Sokovnin S. Y., Ulitko M. Radiomodification of cell cultures of line Hela by cerium oxide nanoparticles to X-ray irradiation. Radiation and Applications, 2017, vol. 2, is. 2, рр. 139–141. doi: 10.21175/RadJ.2017.02.029

3. Filippi A., Liu F., Wilson J., eds. Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals. RSC Advances, 2019, vol. 9, рр. 11077–11081.

4. Eriksson P., Tal A. A., Skallberget A., eds. Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement. Sci. Rep., 2018, vol. 8, рр. 1–12. doi: 10.1038/s41598-018-25390-2

5. Vazirov R. A., Sokovnin S. Y., Ilves V. G., Bazhukova I. N., Pizurova N., Kuznetsov M. V. Physicochemical characterization and antioxidant properties of cerium oxide nanoparticles. Journal of Physics: Conference Series, 2018, vol. 115, is. 3, рр. 1–6. doi: 10.1088/1742-6596/1115/3/032094

6. Heckert E. G, Karakoti A. S., Seal S., Self W. T. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, vol. 29, is. 18, рр. 2705–2709. doi: 10.1016/j.biomaterials.2008.03.014

7. Pugachevskii, M. A., Chzho Aung Khein, Mamontov V. A., Mio Min Tan, Kuz'menko A. P. Fotokataliticheskiye svoystva nanokompozitov CuO/f-MUNT i NiO/fMUNT i trubchatykh nanostruktur oksidov medi i nikelya na ikh osnove [Photocatalytic properties of CuO/f-MUNT and NiO/f-MUNT nanocomposites and tubular nanostructures of copper and nickel oxides based on them]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnikа i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2020, vol. 10, no. 3, рр. 72–85.

8. Baranchicov A. B., Ivanova O. S., Ivanov V. K., Tretyakov Y. D. Lattice expansion and oxygen non-stoichiometry of nanocrystalline ceria. CrystEngComm, 2010, no. 12, рр. 3531–3533. doi: 10.1039/с0ce00245c

9. Gunawan C., Lord M. S., Lovell E., eds. Oxygen-vacancy engineering of cerium-oxide nanoparticles for antioxidant activity. ACS Omega, 2019, vol. 4, 5, рр. 9473–9479.

10. Singh K., Nayak RB. V., Sarkar T., Singh R. P. Cerium oxide nanoparticles: properties, biosynthesis and biomedical application. Royal Society of Chemistry, 2020, vol. 10, рр. 27194–27214. doi: 10.1039/d0ra04736h

11. Abid S. A., Taha A. A., Ismail R. A., Mohsin M. H. Antibacterial and cytotoxic activities of cerium oxide nanoparticlesprepared by laser ablation in liquid. Environmental Science and Pollution Research, 2020, vol. 27(24), рр. 30479–30489. doi: 10.1007/s11356-02009332-9

12. Lapin I. N., Shabalina A. V., Svetlichnyi V. A. Synthesis and Characterization of CeO2. Key Engineering Materials, 2016, vol. 683, рр. 281–287. doi: 10.4028/www.scientific. net/KEM.683.281

13. Yoshihiro T., Fumitaka M. Formation of wide bandgap cerium oxide nanoparticles by laser ablation in aqueous solution. Chemical Physics Letters, 2014, vol. 599, рр. 110–115. doi: 10.1016/j.cplett.2014.03.026

14. Trenque I., Magnano G. C., Bárta J., eds. Synthesis routes of CeO2 nanoparticles dedicated to organophosphorus degradation: a benchmark. CrystEngComm, 2020, vol. 22, рр. 1725–1737. doi: 10.1039/c9cE01898K

15. Aung Ney Vin, Mamontov V. A., Pugachevskii M. A. [Formation of CeO2 nanoparticles by laser ablation]. Nanotekhnologii: obrazovaniye, nauka, innovatsii. Sbornik statey X Vserossiyskoy nauchno-prakticheskoy konferentsii [Nanotechnologies: education, science, innovations. Сollection of articles of the X All-Russian Scientific and Practical Conference]; ed. by P. A. Belov. Kursk, Kursk st. Univ. Publ., 2019, рр. 132–134. (In Russ.)

16. Pugachevskii M. A., Mamontov V. A., Ney Vin Aung, Chekadanov A. S., Kuzmenko A. P. Polucheniye ablirovannykh chastits CeO2 s nanodispersnym raspredeleniyem po sostavu [Preparation of ablated CeO2 particles with nanodisperse distribution by composition]. Pis'ma v zhurnal tekhnicheskoi fiziki = Techniсal Physics Letters, 2020, vol. 46, is. 20, рр. 38–41. doi: 10.21883/PJTF.2020.20.50155.18286

17. Wu L. J., Wiesmann H. J., Moodenbaugh A. R., Klie R. F., Zhu Y., Welch D. O., Suenaga M. Oxidation state and lattice expansion of CeO2–x nanoparticles as a function of particle size. Phys. Rev. B., 2004, vol. 69, рр. 125415-1.

18. Deshpande S., Patil S., Kuchibhatla S. V. N. T., Seal S. Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys., 2005, vol. 87, рр. 133113. doi: 10.1063/1.2061873

19. Pugachevskii M. A., Chibisov A. N., Kuzmenko A. P., Fedorov A. S. Theoretical and Experimental Studies of Structural Defects in CeO2 nanoparticles. Solid state phenomena, 2020, vol. 312, рр. 68–73. doi: 10.4028/www.sceintific.net/SSP.312.68

20. Pugachevskii M. A., Panfilov V. I. Opticheskiye svoystva nanochastits HfO2, ablirovannykh lazernym izlucheniyem [Optical properties of HfO2 nanoparticles ablated by laser radiation]. Zhurnal prikladnoy spektroskopii = Journal of Applied Spectroscopy, 2014, vol. 81, no. 4, рр. 586–589.

21. Pugachevskii M. A. Ultraviolet absorption spectrum of laser-ablated titanium di-oxide nanoparticles. Technical Physics Letters, 2013, vol. 39, no. 1, рр. 36–38. doi: 10.1134/s1063785013010239

22. Shcherbakov A. B., eds. Sposob polucheniya pokrytogo stabiliziruyushchey obolochkoy nanokristallicheskogo dioksida tseriya [Method for producing nanocrystalline cerium dioxide coated with a stabilizing shell]. Patent RF, no. 2484832, 2013.

23. Solís-López M., Durán-Moreno A., Rigas F. Assessment of copper slag as a sustainable fenton-type photocatalyst for water disinfection. Water Reclamation and Sustainability. Elsevier Sciences, 2014, рр. 199–227.


Review

For citations:


Pugachevsky M.A., Mamontov V.A., Kuzmenko A.P., Neruchev Yu.A. Study of Antioxidant Properties of Ablated Cerium Dioxide Nanoparticles in the Oxidative Reaction of Fenton. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(1):63-76. (In Russ.)

Views: 238


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)