Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Influence of SiO2 Impurity on Transformability of Tetragonal Phase of Zirconia Toughened by Al2O3 Particles

Abstract

The purpose of this work was to study the influence of silica additive on transformability (at concentrated loads) of the tetragonal phase of zirconia stabilized with calcium oxide, toughened by aluminum oxide.

Methods. To study of phase transformations in the area of local deformation, a five-cycle indentation method with an increasing load was used. The effectiveness of tetragonal-monoclinic transformations was judged by the quantitative evaluation of the ratios of hysteresis loss energy to plastic deformation energy δ calculated from P-h diagrams.

Results. It has been found that increase of SiO2 impurity concentration from 0 to 5 mol.% in zirconia (stabilized by CaO and containing 5 wt.% Al2O3) causes an increase in the values of δ, that is, an increase in hysteresis losses recorded when the indenter is repenetration into the formed imprint. The reason of observed hysteresis losses are tetragonalmonoclinic transformations t-ZrO2 → m-ZrO2. Therefore, the introduction of SiO2 impurity contributes to improving the transformability of zirconia tetragonal phase. The reason for this may be the interaction of SiO2 and CaO with the formation of calcium silicates and, as a result, imbalance in the concentrations of ZrO2 and its stabilizer CaO. Conclusion. Increasing the transformability of the t-ZrO2 tetragonal phase with the introduction of SiO2 impurity enhances the role of transformation toughening in zirconia reinforced with Al2O3 particles, which provides a significant increase (by more than 70 %) of its fracture toughness. However, exceeding the critical value of SiO2 impurity concentration causes spontaneous (in the absence of mechanical loads) t-ZrO2 → m-ZrO2 transformation, which abruptly reduce the role of the transformation toughening and worsens the strength properties of the studied ceramics.

About the Authors

A. A. Dmitrievskiy
Tambov State University named after G. R. Derzhavin
Russian Federation

Alexander A. Dmitrievskiy, Dr. of Sci. (Physics and Mathematics), Associate Professor, Director of the Center for the Collective use of Scientific Equipment

33 International str., Tambov 392000



D. G. Zhigacheva
Tambov State University named after G. R. Derzhavin
Russian Federation

Darya G. Zhigacheva, Engineer of of the Center for the Collective use of Scientific Equipment

33 International str., Tambov 392000



N. Yu. Efremova
Tambov State University named after G. R. Derzhavin
Russian Federation

Nadezhda Yu. Efremova, Сand. of Sci. (Physics and Mathematics) Associate Professor of the  Department of Theoretical and Experimental Physics

33 International str., Tambov 392000



P. N. Ovchinnikov
Tambov State University named after G. R. Derzhavin
Russian Federation

Pyotr N. Ovchinnikov, Undergraduate of Department of Theoretical and Experimental Physics

33 International str., Tambov 392000



G. V. Grigoriev
Tambov State University named after G. R. Derzhavin
Russian Federation

Grigory V. Grigoriev, Post-Graduate Student  of Department of Theoretical and Experimental Physics

33 International str., Tambov 392000



References

1. Lee J.-K., Kim M.-J., Lee E.-G. Influence of dispersed-alumina particle size on the fracture toughness of 3 mol% yttria-stabilized zirconia polycrystals (3Y-TZP). Journal of Materials Science Letters, 2002, vol. 21, no. 3, pp. 259–261.

2. Zhang F., Lin L.-F., Wang E.-Z. Effect of micro-alumina content on mechanical properties of Al2O3/3Y-TZP composites. Ceramics International, 2015, vol. 41, pp. 12417–12425.

3. Kan Y. M., Kan Y. M., Jin X. H. The intrinsic toughening mechanisms in ceramic composites and their effecting factors. Journal of Ceramics, 1998, no. 19, pp. 221–224.

4. Garvie R. C., Hannink R. H. J., Pascoe R. T. Ceramic Steel? Nature, 1975, vol. 258, pp. 703–704.

5. Hannink R. H. J., Kelly P. M., Muddle B. C. Transformation toughening in zirconiaCONTAINING CERAMICS. J. Am. Ceram. Soc., 2000, vol. 83, no. 3, pp. 461–874.

6. Hazar S., Zaki W., Moumni Z., Anlas G. Modeling of steady-state crack growth in shape memory alloys using a stationary method. International Journal of Plasticity, 2015, vol. 67, pp. 26–38.

7. Stawarczyk B., Ozcan M., Hallman L., Ender A., Mehl A., Hammerlet C. H. F. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio. Clinical Oral Investigations, 2013, vol. 17, no. 1, pp. 269–274.

8. Basu B., Balani K. Advanced structural ceramics. Wiley, 2011, pp. 173–214.

9. Heuer A. H. Transformation toughening in zirconia-containing ceramics. J. of Am. Ceram. Soc., 1987, vol. 70, no. 10, pp. 689–698.

10. Mecartney M. L. Influence of an amorphous second phase on the properties of y ttria-stabilized tetragonal zirconia polycrystals (Y-TZP). J. Am. Ceram. Soc., 1987, vol. 70, pp. 54–58.

11. Gremillard L., Chevalier J., Epicier T., Fantozzi G. Improving the durability of a biomedical-grade zirconia ceramic by the addition of silica. J. Am. Ceram. Soc., 2002, vol. 85, pp. 401–407.

12. Dmitrievskii A. A., Zhigachev A. O., Zhigacheva D. G., Rodaev V. V. Vliyanie dioksida kremniya na stabil'nost' fazovogo sostava i mekhanicheskie svoistva keramiki na osnove dioksida tsirkoniya, uprochnennoi oksidom alyuminiya [The influence of silicon dioxide on the stability of the phase composition and mechanical properties of alumina-toughened zirconia-based ceramics]. Zhurnal tekhnicheskoi fiziki = Technical Physics, 2020, vol. 65, no. 12, pp. 2016–2025.

13. Dmitrievskii A. A., Zhigachev A. O., Zhigacheva D. G., Tyurin A. I. Struktura i mekhanicheskie svoistva kompozitsionnoi keramiki CaO−ZrO2−Al2O3 pri malykh kontsentratsiyakh korunda [Structure and mechanical properties of composite ceramics CaO-ZrO2Al2O3 at low concentrations of corundum]. Zhurnal tekhnicheskoi fiziki = Technical Physics, 2019, vol. 64, no. 1, pp. 86–91.

14. Golovin Yu. I., Dmitrievskii A. A. Effekty vliyaniya malykh doz i intensivnostey radiacionnykh i electromagnitnykh vozdeystviy na svoystva realnykh kristallov [Effects of the influence of small doses and intensities of radiation and electromagnetic influences on the properties of real]. Jurnal funkcionalnykh materialov = Journal of functional materials, 2007, vol. 1, no. 1, pp. 11–20.

15. Dmitrievskii A. A., Tyurin A. I., Zhigachev A. O., Guseva D. G., Ovchinni- kov P. N. Vliyanie soderzhaniya korunda i temperatury spekaniya na mekhanicheskie svoistva keramicheskikh kompozitov CaO−ZrO2−Al2O3 [Тhe influence of corundum content and sintering temperature on the mechanical proper-ties of CaO–ZrO2–Al2O3 ceramic composites]. Pis'ma v zhurnal tekhnicheskoi fiziki = Technical Physics Letters, 2018, vol. 44, no. 2, pp. 141–144.

16. Golovin Yu. I. Nanoindentirovanie i mekhanicheskie svoistva tverdykh tel v submikroob"emakh, tonkikh pripoverkhnostnykh sloyakh i plenkakh [Nanoindentation and mechanical properties of solids in submicro-volumes, thin near-surface layers, and films: A Review]. Fizika tverdogo tela = Phys. Sol. State, 2008, vol. 50, no. 12, pp. 2205–2236.

17. Anstis G. R., Chantikul P., Lawn B. R., Marshall D. B. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc., 1981, vol. 64, no. 9, pp. 533–538.

18. Maiti P., Ghosh J., Mukhopadhyay A. K. New observations and critical assessments of incipient plasticity events and indentation size effect in nanoindentation of ceramic nanocomposites. Ceramics International, 2020, vol. 46, no. 3, pp. 3144–3165.

19. Dmitrievskiy A. A., Zhigacheva D. G., Efremova N. Y., Umrikhin A. V. Stoikost' fazovogo sostava i mekhanicheskikh svoistv nanostrukturirovannykh kompozitsionnykh keramik na osnove CaO-ZrO2 k gidrotermal'nym vozdeistviyam [Phase composition stability of nanostructured composite ceramics based on CaO–ZrO2 under hydrothermal impact]. Rossiiskie nanotekhnologii = Nanotechnologies in Russia, 2019, vol. 14, no. 3-4, pp. 125–131.

20. Dmitrievskiy A. A., Efremova N. Yu, Vihlyaeva E. M., Korenkov V. V., Shukli- nov A. V., Badylevich M. V., Fedorenko Yu. G. Mekhanicheskie svoistva struktur AlN/Si v usloviyakh nizkointensivnogo beta-oblucheniya [Mechanical properties of AIN/Si struc-tures under conditions of lowflux beta irradiations]. Izvestiya RAN. Seriya Fizicheskaya = Bulletin of the Russian Academy of Sciences: Physics, 2010, vol. 74, no. 2, pp. 209–212.


Review

For citations:


Dmitrievskiy A.A., Zhigacheva D.G., Efremova N.Yu., Ovchinnikov P.N., Grigoriev G.V. Influence of SiO2 Impurity on Transformability of Tetragonal Phase of Zirconia Toughened by Al2O3 Particles. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(1):49-62. (In Russ.)

Views: 117


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)