Preview

Proceedings of the Southwest State University. Series: Engineering and Technology

Advanced search

Structuring of Magnetron Zr Nanofilms Upon Annealing TD < Tan < Tm in the Atmosphere

Abstract

Purpose of research. Complex characterization of the degradation of magnetron Zr nanofilms upon atmospheric annealing at temperatures up to Tan = 973 K, satisfying the condition TD < Tan < Tm (above the Debye temperature TD, but below the melting temperature Tm) and a qualitative description of the clustering processes of both metallic zirconium and its oxides.

Methods. Magnetron sputtering of a Zr target in a constant current mode (power 300 W, sputtering time 300 s, working gas Ar, flow rate0.7 L / h). Magnetron nanofilms were deposited in an MVU TM - "Magna T" installation on silicon substrates (with IR heating - up to 403 K, ion cleaning - 60 mA for 120 s). The characterization of magnetron nanofilms was carried out by the methods: X-ray phase analysis and annealing (Tan) in air in an Anton Paarthermocell (with a step of 100 K to 973 K), atomic force microscopy, and Raman scattering of light. The fractal dimension (D) of MN was determined by the Hausdorff-Besicovich method.

Results. The particle size distribution of nanoclusters in Zr films at all temperatures Tan was Gaussian. The dimensions of the coherence region (L) and the relative changes in microstrains (ε) are calculated from the diffractograms. The chemical structural changes during the annealing of zirconium nanofilms have been studied both by XRD and Raman scattering. The temperatures of phase structural transitions and associated chemical transformations were determined from AFM images of the MN surface.

Conclusion. Degradation changes recorded during the complex use of nanoinstrumental methods in the analysis of MN (in particular, from Zr) both in the initial state immediately after MR and after annealing in an atmosphere with annealing temperatures up to Tan = 973 K (TD < Tan <Tm) , have shown the practical significance of the obtained quantitative parameters such as the size of crystallites, microstrains, texture, fractal dimension and roughness of their surface.

About the Authors

A. P. Kuzmenko
Southwest State University
Russian Federation

Aleksandr P. Kuzmenko, Dr. of Sci. (Physics and  Mathematics), Professor, Head of Regional Center for Nanotechnologies

50 Let Oktyabrya str. 94, Kursk 305040



Thant Sin Win
Southwest State University
Russian Federation

Thant Sin Win, Post-Graduate Student of the Department of Nanotechnology, Microelectronics, General and Applied Physics

50 Let Oktyabrya str. 94, Kursk 305040



Myo Min Than
Southwest State University
Russian Federation

Myo Min Than, Cand. of Sci. (Physics and Mathematics), Senior Research of the Regional Center of Nanotechnology

50 Let Oktyabrya str. 94, Kursk 305040



A. V. Kuzko
Southwest State University
Russian Federation

Anna V. Kuzko, Сand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology

50 Let Oktyabrya str. 94, Kursk 305040



Naw Dint
Myitkyina State University
Myanmar

Naw Dint, Сand. of Sci. (Physics and Mathematics), Department of Chemistry

Myitkyina 01012



References

1. Young P., Jin Z. Influence of noble metals on the electronic and optical properties of the monoclinic ZrO2: A first principles study. Vacuum, 2021, vol. 187, pp. 110112–110116.

2. Akash S., Kuppusamia P., Thirumurugesana R., Ramaseshan R., Kamruddin M., Dash S., Ganesan V., Mohandas E. Study of microstructure and nanomechanical properties of Zr films prepared by pulsed magnetron sputtering. Applied Surface Science, 2011, vol. 257, pp. 9909-9914. http://doi.org/10.1016/j.apsusc.2011.06.106.

3. Ashcheulov P., Skoda R., Skarohlid J., Taylor A., Fendrych F., Kratochvílová I. Layer protecting the surface of zirconium used in nuclear reactors. Recent Patents on Nanotechnology, 2016,vol. 10, no. 1, pp. 59-65.

4. Mehjabeen A., Song T., Xu W., Tang H. P., Qian M. Zirconium alloys for orthopaedic and dental applications. Adv. Eng. Mater., 2018, vol. 20, pp. 1–21. http://doi.org/10.1002/adem.201800207.

5. Usmani B., Vijay V., Chhibber R., Dixit A. Optimization of sputtered zirconium thin films as an infrared reflector for use in spectrally-selective solar absorbers. Thin Solid Film, 2017, vol. 627, pp. 17–25.

6. Luo H., Gao F., Billard A. Tunable microstructures and morphology of zirconium films via an assist of magnetic field in HiPIMS for improved mechanical properties. Surf. Coat. Technol., 2019, vol. 374, pp. 822–832. http://doi.org/10.1016/j.surfcoat.2019.06.072.

7. Venkatara S., Oliver K., Hansjorg W., Robert D., Jayavel R., Matthias W. Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering. Journal of applied physics, 2002, vol. 92, no. 7, pp. 3599–3607. http://doi.org/10.1063/1.1503858.

8. Uttkarsh S. P., Kartik H. P., Kamlesh V. C., Amit K. C., Sushant K. R. Investigation of various properties for zirconium oxid films synthesized by sputtering. Procedia Technology, 2016, vol. 23, pp. 336–343. http://doi.org/10.1016/j.protcy.2016.03.035.

9. Toshiaki K., Touko T., Takashi Y., Hideki M. Formation of ideally ordered porous anodic zirconia by anodization of vacuum deposited Zr on molds. J. Vac. Sci. Technol. B, 2021, vol. 39, no. 2, pp. 1–4 (020601). http://doi.org/10.1116/6.0000864.

10. Kuzmenko А. P., Pugachevsky M. A., Dreizin V. E., Chaplygin A. N., Chekada- nov A. S. Nanostrukturirovanie ZrO2 pri impul'snoi lazernoi ablyatsii [Nanostructuring of ZrO2 in pulsed laser ablation]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2012, no. 2 (41), pt. 1, pp. 113–119.

11. Khojier K., Savaloni H., Jafari F. Structural, electrical, and decorative properties of sputtered zirconium thin films during post-annealing process. J. Theor. Appl. Phys., 2013, vol. 7, no. 55, pp. 1-7. http://doi.org/10.1186/2251-7235-7-55.

12. Wang Y. M., Feng W., Xing Y. R., Ge Y. L., Guo L. X., Ouyang J. H., Jia D. C., Zhou Y. Degradation and structure evolution in corrosive LiOH solution of microarc oxidation coated Zircaloy-4 alloy in silicate and phosphate electrolytes. Applied Surface Science, 2018, vol. 43, pp. 2–12. http://doi.org/10.1016/j.apsusc.2017.04.226.

13. Wei K., Chen L., Qu Y.Yifan Z., Xiaoyue J., Wenbin X., Jinlong Z. Zeta potential of microarc oxidation film on zirlo alloy in different aqueous solutions. Corros. Sci., 2018, vol. 143, pp. 129–135.

14. Arun S., Arunnellaiappan T., Rameshbabu N. Fabrication of the nanoparticle incorporated PEO coating on commercially pure zirconium and its corrosion resistance. Surf. Coat. Tech., 2016, vol. 305, pp. 264–273.

15. Tedi Kurniawan, Kuan Yew Cheong, Khairunisak Abdul Razak, Zainovia Lockman, Nuruddin Ahmad. Oxidation of sputtered Zr thin film on Si substrate. J. Mater. Sci.: Mater. Electron., 2011, vol. 22, pp. 143–150. http://doi.org/10.1007/s10854-010-0103-1.

16. Alireza H. Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates. J. Theor. Appl. Phys., 2016, vol. 10, pp. 219–224. http://doi.org/10.1007/s40094-016-0218-8.

17. Kuzmenko A. P., Tant Sin Win, Myo Min Tan, Naw Dint. Magnetronnye odno- i mul'tisloinye nanoplenki iz Nb, C i Si [Magnetron single- and multilayer nanofilms from Nb, C and Si]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2019, vol. 9, no. 4, pp. 30–52.

18. Kuzmenko A. P., Kuzko A. E., Nau Dint, Myo Min Than, Kanukov R. T. Protsessy degradatsii pri nagrevanii na vozdukhe v magnetronnykh nanoplenkakh Ni i Cr [Degradation processes during heating in air in magnetron nanofilms Ni and Cr]. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i tekhnologii = Proceedings of the Southwest State University. Series: Engineering and Technologies, 2016, vol. 2, no. 19, pp. 153–165.

19. Kuzmenko A. P., Thant Sin Win, Myo Min Tan, Naw Dint, Besedin A. G. Degradatsiya magnetronnykh nanoplenok Hf i Mo v usloviyakh atmosfernogo otzhiga [Degradation of Hf and Mo magnetron nanofilms under atmospheric annealing conditions]. Izvestiya YugoZapadnogo gosudarstvennogo universiteta = Proceedings of the Southwest State University, 2020, vol. 10, no. 3, pp. 86–104.

20. Valyukhov S. G., Stogney O. V., Filatov M. S. Vliyanie uslovii magnetronnogo napyleniya na strukturu zharostoikikh nanostrukturirovannykh pokrytii iz dioksida tsirkoniya ZrO2 [Influence of magnetron sputtering conditions on the structure of heat-resistant nanostructured coatings made of zirconium dioxide ZrO2]. Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie = Proceedings of Higher Educational Institutions. Mechanical Engineering, 2015, vol. 11, no. 668, pp. 97–105. http://doi.org/10.18698/0536-1044-2015-11-97-105.

21. Zheng-Yang L., Zhen-Bing C., Xue-Jun C., Rui-Rui L., Zhong-Bo Y., Min-Hao Z. Influence of nanoparticle additions on structure and fretting corrosion behavior of micro-arc oxidation coatings on zirconium alloy. Surface & Coatings Technology, 2021, vol. 410, pp. 1–15. http://doi.org/10.1016/j.surfcoat.2021.126949.

22. Laurits P., Valter K., Kathriin U., Hugo M., Ilmo S. Afterglow and thermoluminescence of ZrO2 nanopowders. Cent. Eur. J. Phys., 2014, vol. 12, no. 6, pp. 415–420. http://doi.org/10.2478/s11534-014-0456-9.

23. Torkhov N. A., Novikov V. A. Fraktal'naya geometriya poverkhnostnogo potentsiala elektrokhimicheski osazhdennykh plenok platiny i palladiya [Fractal geometry of the surface potential of electrochemically deposited films of platinum and palladium]. Fizika i tekhnika poluprovodnikov = Physics and technology of semiconductors, 2009, vol. 8, no. 43, pp. 1109– 1116.

24. Prajapati C. S., Sahay P. P. Alcohol-sensing characteristics of spray deposited ZnO nano-particle thin films. Sensors and Actuators B, 2011, vol. 160, pp. 1043.


Review

For citations:


Kuzmenko A.P., Win T., Than M., Kuzko A.V., Dint N. Structuring of Magnetron Zr Nanofilms Upon Annealing TD < Tan < Tm in the Atmosphere. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(2):133-150. (In Russ.)

Views: 81


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-1528 (Print)