The Dependence of the Rotational Effect in Magnetic Fluids on the Parameters of Magnetic Field
Abstract
Purpose. The dynamics of the rotation of liquid masses, the study of the equilibrium shapes of rotating liquids and their nonequilibrium states have traditionally attracted the researchers’ attention. The key problem of this work is the experimental study of the rotational effect in magnetic fluids. A macroscopic capsule filled with magnetic fluid acquires a rotational moment because of spatial orientation of magnetite nanoparticles under the action of an external rotating magnetic field. The magnitude of this effect depends on many parameters. We discuss how it depends on the frequency and amplitude of the external rotating magnetic field, as well as on the concentration and viscosity of the magnetic fluid.
Methods. Our research object is magnetic fluids APG 942 and APG 2135, produced at the Ferrotec Corporation (Japan), and their derivants obtained by mixing with dodecane and durazin. Magnetic nanoparticles are from magnetite, dispersion medium is synthetic hydrocarbon oil.
The experimental data were obtained using a torsion pendulum in a rotating magnetic field. A spherical capsule was filled with the samples and suspended on a thin elastic thread. A webcam placed under the capsule registered the angle of its rotation relative to the equilibrium position. Taking into account the elastic coefficient of the thread, we plotted the dependences of the rotational moment of the sample on the parameters of the external rotating magnetic field.
Results. The result of our experimental research is the dependences of the rotational effect in a magnetic fluid on the amplitude and frequency of the external magnetic field. The influence of the concentration, magnetic characteristics and viscosity of magnetic fluid samples on the rotational effect is also discussed. We suggest the aggregation model of the rotational effect, which describes the experimental data from the point of view of the formation and destruction of aggregates and clusters of magnetic nanoparticles.
Conclusion. The research results allow analyzing the structure of magnetic dispersed systems. It can be used in the development of devices based on the action of alternating magnetic fields on a magnetic fluid.
Keywords
About the Authors
A. G. BesedinRussian Federation
Alexander G. Besedin, Сand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk 305040
I. A. Shabanova
Russian Federation
Irina A. Shabanova, Сand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk 305040
A. O. Tantsyura
Russian Federation
Anton O. Tantsyura, Dr. of Sci. (Physics and Mathematics), Associate Professor of the Department of Power Supply
50 Let Oktyabrya str. 94, Kursk 305040
A. S. Chekadanov
Russian Federation
Alexander S. Chekadanov, Researcher of the Regional Center for Nanotechnology
50 Let Oktyabrya str. 94, Kursk 305040
A. M. Storozhenko
Russian Federation
Anastasiya M. Storozhenko, Сand. of Sci. (Physics and Mathematics), Associate Professor, Senior Researcher of the Regional Center for Nanotechnology
50 Let Oktyabrya str. 94, Kursk 305040
References
1. Moskowitz R., Rosensweig R. E. Nonmechanical torque‐driven flow of a ferromagnetic fluid by an electromagnetic field. Appl. Phys. Lett., 1967, vol. 11, рр. 301–303.
2. Kumar C. S., Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews, 2011, vol. 63, рр. 789–808.
3. Bacri J. C., Perzynski R., Shliomis M. I., Burde G. I. “Negative-Viscosity” effect in a magnetic fluid. Phys. Rev. Lett., 1995, vol. 75, рр. 2128–2131.
4. Torres-Diaz I., Cortes A., Cedeño-Mattei Y., Perales-Perez O., Rinaldi C. Flows and torques in Brownian ferrofluids subjected to rotating uniform magnetic fields in a cylindrical and annular geometry. Physics of Fluids, 2014, vol. 26, рр. 012004.
5. Chaves A., Zahn M., Rinaldi C. Spin-up flow of ferrofluids: Asymptotic theory and experimental measurements. Phys. Fluids, 2008, vol. 20, рр. 053102.
6. Torres-Diaz I., Rinaldi C. Ferrofluid flow in a spherical cavity under an imposed uniform rotating magnetic field: Spherical spin-up flow. Phys. Fluids, 2012, vol. 24, рр. 082002.
7. Morozov K. I., Engel A., Lebedev A. V. Shape transformations in rotating ferrofluid drops. Europhys. Lett., 2002, vol. 58, рр. 229–235.
8. Brown W. F. J. Thermal Fluctuations of a Single-Domain Particle. Phys. Rev., 1963, vol. 130, is. 5, рр. 1677–1686.
9. Kagan I. Y., Rykov V. G., Yantovskii E. I. Flow of a dielectric ferromagnetic suspension in a rotating magnetic field. Magnetohydrodynamics, 1973, vol. 9, рр. 258–261.
10. Zaitsev V. M., Shliomis M. I. Entrainment of ferromagnetic suspension by a rotating field. J. Appl. Mech. Tech. Phys., 1967, vol. 10, is. 5, рр. 696–700.
11. Rosensweig R. E., Popplewell J., Johnston R. J. Magnetic fluid motion in a rotating field. J. Magn. Magn. Mater., 1990, vol. 85, рр. 171–180.
12. Usadel K. D., Usadel C. Dynamics of magnetic single domain particles embedded in a viscous liquid. J. Appl. Phys., 2015, vol. 118, рр. 234303.
13. Usadel K. D. Dynamics of magnetic nanoparticles in a viscous fluid driven by rotating magnetic fields. Phys. Rev. B., 2017, vol. 95, рр. 103–108.
14. Scherer C., Figueiredo Neto A. M. Ferrofluids: properties and applications. Brazilian Journal of Physics, 2005, vol. 35, рр. 718–727.
15. Usov N. A. Low frequency hysteresis loops of superparamagnetic nanoparticles with uniaxial anisotropy. J. Appl. Phys., 2010, vol. 107, рр. 123909.
16. Pankhurst Q. A., Connolly J., Jones S. K., Dobson J. Topical review: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys., 2003, vol. 36, рр. R167–R181.
17. Li Q., Xuan Y. Wang J. Experimental investigations on transport properties of magnetic fluids. Exp. Therm. Fluid Sci., 2005, vol. 30, рр. 109–116.
18. Connolly J., Pierre T. G. St. Proposed biosensors based on time-dependent properties of magnetic fluids. J. Magn. Magn. Mater., 2001, vol. 225, no. 1–2, рр. 156–160.
19. Eberbeck D., Bergemann C., Wiekhorst F., Steinhoff U., Trahms L. Quantification of specific bindings of biomolecules by magnetorelaxometry. J. Nanobiotechnol, 2008, vol. 6, рр. 1–12.
20. Chung S. H., Hoffmann A., Bader S. D., C. Liu, B. Kay, L. Makowski, Chen L. Biological sensors based on Brownian relaxation of magnetic nanoparticles. Appl. Phys. Lett., 2004, vol. 85, рр. 2971–2973.
21. Kafrouni L., Savadogo O. Recent progress on magnetic nanoparticles for magnetic hyperthermia. Prog. Biomater., 2016, vol. 5, рр. 147–160.
22. Storozhenko A. M., Stannarius R., Tantsyura A. O., Shabanova I. A. Measurement of the torque on diluted ferrofluid samples in rotating magnetic fields. J. Magn. Magn. Mater., 2017, vol. 431, рр. 66–69.
23. Pshenichnikov A. F., Lebedev A. V. Action of a rotating magnetic field on a dielectric cylinder immersed in a magnetic fluid. Journal of Applied Mechanics and Technical Physics, 1996, vol. 37, рр. 305–310.
Review
For citations:
Besedin A.G., Shabanova I.A., Tantsyura A.O., Chekadanov A.S., Storozhenko A.M. The Dependence of the Rotational Effect in Magnetic Fluids on the Parameters of Magnetic Field. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(2):119-132. (In Russ.)