Kinetics of Formation of Langmuir Films from Stabilized Quantum Dots CdSe / CdS / ZnS
Abstract
Purpose of research. Form a film structure from stabilized CdSe/CdS/ZnS quantum dots by the Langmuir – Blodgett method and comprehensively characterize it using modern nanoinstrumental methods.
Methods. Determination of surface morphology by atomic force microscopy; chemical structure by Raman scattering of light; the size of CdSe/CdS/ZnS quantum dots, including by the method of small-angle X-ray scattering.
Results. A family of compression isotherms of Langmuir monolayers is obtained on a colloidal system of CdSe / CdS / ZnS quantum dots stabilized by trioctylphosphine and its oxide. From the analysis of isotherms, rational parameters of the formation of a Langmuir film and its transfer to a solid substrate have been established. It is found that the control parameters of the formation of quantum dots in a Langmuir film are the temperature of the water subphase and the surface concentration of quantum dots. The decisive role in the deposition of the film is assigned to the speed of the dipper movement.
Atomic force microscopy revealed its regularity in the film structure, and determined the lateral size of the aggregates of stabilized quantum dots (about 50 nm). Longitudinal optical phonon modes characteristic of CdSe/CdS/ZnS have been detected by the method of Raman light scattering.
A theoretical calculation of the position of Langmuir barriers is carried out when a monolayer structure with a hexagonal close packing of quantum dots is formed between them.
Conclusion. The Langmuir – Blodgett method, which allows the formation of quantum dots into film structures, acts as an alternative, for example, to eleonic methods, differing in automation, repeatability and unpretentiousness to environmental conditions. Using the method of atomic force microscopy, it is possible to establish a rational regime for the formation of Langmuir films with their subsequent complex characterization.
About the Authors
A. P. KuzmenkoRussian Federation
Alexander P. Kuzmenko, Dr. of Sci. (Physics and Mathematics), Professor, Director of the Regional Center for Nanotechnology
50 Let Oktyabrya str. 94, Kursk 305040
E. A. Noviko
Russian Federation
Evgeny A. Novikov, Post-Graduate Student
50 Let Oktyabrya str. 94, Kursk 305040
V. V. Rodionov
Russian Federation
Vladimir V. Rodionov, Cand. of Sci. (Engineering), Senior Researcher of the Regional Center for Nanotechnology
50 Let Oktyabrya str. 94, Kursk 305040
A. V. Kuzko
Russian Federation
Anna V. Kuzko, Сand. of Sci. (Physics and Mathematics), Associate Professor of the Department of Nanotechnology, General and Applied Physics
50 Let Oktyabrya str. 94, Kursk 305040
D. P. Anikin
Russian Federation
Dmitry P. Anikin, General Manager
Severnaya Promzona territory, sec. 95/5, Armavir 352900
D. V. Krylsky
Russian Federation
Dmitry V. Krylsky, Dr. of Sci. (Chemistry), Head of the Department of Physical and Chemical Technologies
9-th May str. 7A, Dubna 141980
S. V. Dezhurov
Russian Federation
Sergey V. Dezhurov, Researcher
9-th May str. 7A, Dubna 141980
References
1. Khan K., Khan Tareen A., Aslam M., eds. Recent developments in emerging two-dimensional materials and their applications. Journal of Materials Chemistry C, 2020, vol. 8, рp. 387–440. http://doi.org/10.1039/C9TC04187G
2. Iannaccone G., Bonaccorso F., Colombo L., Fiori G. Quantum engineering of transistors based on 2D materials heterostructures. Nature nanotechnology, 2018, vol. 13, рр. 183–191. http://doi.org/10.1038/s41565-018-0082-6
3. Mikhailov A. I., Kabanov V. F., Gorbachev I. A., eds. Electronic properties of A2B6 quantum dots incorporated into Langmuir–Blodgett films. Bulletin of the Russian Academy of Sciences: Physics, vol. 81, рр. 1472–1475. http://doi.org/10.3103/S1062873817120231
4. Gorbachev I. A., Shtykov S. N., Glukhovskoy E. G. Polucheniye i fluorestsentsiya mnogosloynykh plenok Lengmyura – Blodzhett, soderzhashchikh kvantovyye tochki CdSe/CdS/ZnS [Obtaining and fluorescence of multilayer Langmuir-Blodgett films containing CdSe/CDs/ZnS quantum dots]. Izvestiya Saratovskogo universiteta. Novaya Seriya: Fizika = Proceedings of the Saratov State University. New Series: Physics, 2015, vol. 15, no. 1, рр. 40–45.
5. Jahangir M. A., Gilani S. J., Muheem A. L., eds. Quantum dots: next generation of smart nano-systems. Pharmaceutical Nanotechnology, 2019, vol. 7, рр. 234–245. http://doi.org/10.2174/2211738507666190429113906
6. Stanković N. K., Bodik M., Siffalovic P., eds. Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots langmuir–blodgett thin films. ACS American Chemistry Engineering, 2018, vol. 6 (3), рр. 4154–4163. http://doi.org/10.1021/acssuschemeng.7b04566
7. Gulyaev D. V., Sveshnikova L. L., Bacanov S. A., eds. Photoluminescence of the PbS quantum dots fabricated by the Langmuir-Blodgett technique. Journal of Physics: Conference Series, 2017, vol. 864. http://doi.org/10.1088/1742-6596/864/1/012074
8. Nikolenko L. M., Razumov V. F. Kolloidnyye kvantovyye tochki v solnechnykh elementakh [Colloidal quantum dots in solar cells]. Uspekhi khimii = Advances in chemistry, 2013, no. 82, рр. 429–448.
9. Christodoulou S., Climente J. I., Planelles J., eds. Chloride-induced thickness control in CdSe nanoplatelets. Nano Letters, 2018, no. 18, рр. 6248–6254. http://doi.org/10.1021/acs.nanolett.8b02361
10. Khaken G. Informatsiya i samoorganizatsiya: Makroskopicheskii podkhod k slozhnym sistemam [Information and self-organization: a macroscopic approach to complex systems]. Moscow, Mir Publ., 1981. 420 p.
11. Togashi D. M., Romão R. I. S., Gonçalves Da Silva A. M., eds. Self-organization of a sulfonamido-porphyrin in Langmuir monolayers and Langmuir–Blodgett films. Physical Chemistry Chemical Physics, 2005, vol. 7, рр. 3874–3883. http://doi.org/10.1039/b506442b
12. Kondalkar V. V., Mali S. S., Kharade R. R., eds. Langmuir–Blodgett self organized nanocrystalline tungsten oxide thin films for electrochromic performance. RSC Advances, 2015, vol. 5, рр. 26923–26931. http://doi.org/10.1039/C5RA00208G
13. Roldugin V. I. Samoorganizatsiya nanochastits na mezhfaznykh poverkhnostyakh [Self-organization of nanoparticles on interfacial surfaces]. Uspekhi khimii = Advances in chemistry, 2004, vol. 73, no. 2, pp. 123–156.
14. Zhang L.-J., Shen X.-C., Liang H., Yao J.-T. Multiple families of magic-sized ZnSe quantum dots via noninjection one-pot and hot-injection synthesis. Journal of Physical Chemistry, 2010, vol. 114(50), рр. 21921–21927. http://doi.org/10.1021/jp1044282
15. Matushkin L. B., Alexandrova O. A., Maksimov A. I. O., eds. Osobennosti sinteza lyuminestsiruyushchikh poluprovodnikovykh nanochastits v polyarnykh i nepolyarnykh sredakh [Features of the synthesis of luminescent semiconductor nanoparticles in polar and nonpolar media]. Biotekhnosfera = Biotechnosphere, 2013, no. 2, рр. 28–33.
16. Murray C., Norris J., Bawendi M. G. Synthesis and characterization of nearly monodisperce CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, vol. 115, рр. 8706–8715. http://doi.org/10.1021/ja00072a025
17. Al-Alwani A. J. K., Chumakov A. S., Shinkarenko O. A., eds. Formation and optoelectronic properties of graphene sheets with CdSe/CdS/ZnS quantum dots monolayer formed by Langmuir-Schaefer hybrid method. Applied Surface Science, 2017, vol. 424, рр. 222–227. http://doi.org/10.1016/j.apsusc.2017.03.235
18. Gorbachev I. A., Chumakov A. S., Ermakov A. V., eds. Issledovaniye mnogosloynykh struktur na osnove plenok Lengmyura – Blodzhett, soderzhashchikh kvantovyye tochki CdSe/ZnS [Study of multilayer structures based on Langmuir-Blod-jett films containing CdSe/ZnS quantum dots]. Izvestiya Saratov gosudarstvennogo universiteta. Seriya: Fizika = Proceedings of the Saratov State University. Series: Physics, 2013, vol. 13, no. 2, рр. 54–57.
19. Jianmin Xu, Xiaojun Ji, Kerim Gattas Asfura, eds. Langmuir and Langmuir– Blodgett films of quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, vol. 284–285, рр. 35–42. http://doi.org/10.1016/j.colsurfa.2005.11.046
20. Alexandridis P. A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir, 1998, no. 14, рр. 2627–2638.
21. Akcipetrov O. A. Giganskoe nelineino-opticheskie yavleniya na poverkhnosti metallov [Gigantic nonlinear optical phenomena on the surface of metals]. Sorosovskii obrazovatel'nyi zhurnal = Soros Educational Journal, 2001, no. 7, is. 7, pp. 109–116.
22. Hai Le Ba, Nghia Nguyen Xuan, Pham Thu Nga, eds. Preparation and spectroscopic investigation of colloidal CdSe/CdS/ZnS core/multishell nanostructure. Journal of Experimental Nanoscience, 2009, vol. 4, no. 3, рр. 277–283. http://doi.org/10.1080/17458080802178619
Review
For citations:
Kuzmenko A.P., Noviko E.A., Rodionov V.V., Kuzko A.V., Anikin D.P., Krylsky D.V., Dezhurov S.V. Kinetics of Formation of Langmuir Films from Stabilized Quantum Dots CdSe / CdS / ZnS. Proceedings of the Southwest State University. Series: Engineering and Technology. 2021;11(2):86-103. (In Russ.)