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МЕТАЛЛУРГИЯ И МАТЕРИАЛОВЕДЕНИЕ 

 

METALLURGY AND MATERIALS SCIENCE 
 

Оригинальная статья / Original article 

УДК 621.2.082.18 

https://doi.org/10.21869/2223-1528-2025-15-4-8-20                                                        

Имплантирование деталей дифференциала материалами  

на основе карбида вольфрама 

А.О. Горленко1, Е.В. Агеева2, Н.В. Табольская2, И.Р. Гладских2,  

В.В. Мищенко2 

1 Брянский государственный технический университет 
  бул. 50 лет Октября, д. 7, г. Брянск 241035, Российская Федерация 

2 Юго-Западный государственный университет 

  ул. 50 лет Октября, д. 94, г. Курск 305040, Российская Федерация 

 e-mail: ageevа-ev@yandex.ru 

Резюме 

Целью настоящей работы являлось решение проблемы повышения износостойкости деталей дифферен-

циала трансмиссии автомобиля путем их имплантирования с последующей обработкой поверхностно-пла-

стической деформацией. 

Методы. Для достижения поставленной в работе цели использовались следующие методы обработки ис-

следуемых деталей: исправление геометрии шипа крестовины, бывшей в эксплуатации, путем точения на 

токарно-винторезном станке; нанесение графитовольфрамовой обмазки на подготовленные к импланти-

рованию поверхности и ее сушка; непосредственно имплантирование на специально разработанной для 

этого процесса установке; упрочнение имплантированной поверхности путем обкатки двухроликовой го-

ловкой; чистовое шлифование упрочненной поверхности шипа крестовины; исследование износостойкости 

упрочненных поверхностей по стандартной методике; оценка ресурса восстановленных и упрочненных де-

талей. 

Результаты. На основании проведенных исследований, направленных на повышение износостойкости де-

талей дифференциала трансмиссии автомобиля, установлено, что свойства восстановленных и упроч-

ненных поверхностей крестовины дифференциала зависят от состава и структуры сформированного по-

верхностного слоя путем имплантирования вольфрамсодержащих материалов и последующей обкатки 

двухроликовой головкой. В частности, установлено, что износостойкость рабочих поверхностей деталей, 

восстановленных и упрочненных по новой комбинированной технологии, увеличивается в 2,07 раза по срав-

нению с новыми при сопоставимом увеличении ресурса.  

Заключение. Поставленная цель достигнута, а именно решена проблема повышения износостойкости де-

талей дифференциала трансмиссии автомобиля путем их имплантирования с последующей обработкой 

поверхностно-пластической деформацией. Полученные в данной работе результаты работы могут найти 

практическое применение при организации ресурсосберегающих и импортозамещающих технологий, кото-

рые, в свою очередь, будут способствовать созданию высокотехнологичных производств. 

 

Ключевые слова: детали дифференциала; износ; комбинированная обработка; карбид вольфрама; имлан-

тирование. 

_______________________ 

 Горленко А. О., Агеева Е. В., Табольская Н. В., Гладских И. Р., Мищенко В. В., 2025 
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Abstract 

The purpose of this work was to solve the problem of increasing the wear resistance of car transmission differential 

parts by implanting them with subsequent treatment by surface plastic deformation. 

Methods. To achieve the goal set in the work, the following methods of processing the studied parts were used: cor-

recting the geometry of the spike of a crosspiece that was in use by turning on a rotary-screw machine; applying 

graphite-tungsten coating to surfaces prepared for implantation and drying it; directly implanting on an installation spe-

cially designed for this process; hardening the implanted surface by running in with a two-roller head; fine grinding of 

the hardened surface of the crosspiece spike; investigation of the wear resistance of hardened surfaces according to 

the standard methodology; evaluation of the resource of restored and hardened parts. 
Results. Based on the conducted studies aimed at increasing the wear resistance of the differential transmission parts 

of the car, it was found that the properties of the restored and hardened surfaces of the differential crosspiece depend 

on the composition and structure of the formed surface layer by implanting tungsten-containing materials and subse-

quent running-in with a two-roller head. In particular, it was found that the wear resistance of the working surfaces of 

parts repaired and hardened using the new combined technology increases by 2.07 times compared with the new ones 

with a comparable increase in service life.  

Conclusion. Thus, the goal has been achieved, namely, the problem of increasing the wear resistance of the differen-

tial transmission parts of the car by implanting them with subsequent treatment by surface plastic deformation has been 

solved. The results obtained in this work can find practical application in the organization of resource-saving and import-

substituting technologies, which in turn will contribute to the creation of high-tech industries. 
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Введение 

В контексте современного машино-
строения [1] исследования, направленные 
на повышение износостойкости [2] пары 
трения «сателлит – ось сателлита» диффе-
ренциала, безусловно, остаются крайне 
актуальными. Ключевым аспектом в этом 
направлении является выбор рациональ-
ных технологических методов обработки, 
ориентированных на достижение макси-
мальной износостойкости поверхностей 
трения [3] деталей дифференциала. Раци-
ональный подбор способов обработки [4] 
позволяет не только продлить срок 
службы узлов, но и обеспечить надежную 
и эффективную работу механизма в усло-
виях интенсивных эксплуатационных 
нагрузок [5]. 

Особенно перспективной техникой в 
данном случае представляется упрочняю-
щая обработка [6]. Этот метод позволяет 
осуществлять целенаправленное воздей-
ствие на поверхность трения, что способ-
ствует минимизации износа контактирую-
щих деталей. Одним из наиболее эффек-
тивных подходов является создание мно-
гослойных модифицированных поверх-
ностных слоев, которые обладают высо-
кими физико-механическими свойствами 
[7]. 

Выбор конкретного метода упрочня-
ющей обработки зависит от характери-
стик материала, условий эксплуатации и 
специфических требований к компонен-
там дифференциала [8]. Комплексный 
подход, включающий анализ условий ра- 

боты, подбор оптимальных технологиче-
ских параметров и контроль качества об-
работанных поверхностей, является зало-
гом успешного повышения износостойко-
сти и долговечности узлов [9]. 

Таким образом, дальнейшие исследо-
вания в области технологического обеспе-
чения износостойкости пары трения «са-
теллит – ось сателлита» дифференциала, с 
акцентом на упрочняющие методы обра-
ботки и создание многослойных модифи-
цированных поверхностей [10], имеют 
значительный потенциал для улучшения 
эксплуатационных характеристик деталей 
дифференциала и обеспечения их надеж-
ной работы в течение длительного вре-
мени [11]. 

Материалы и методы 

Одной из важнейших деталей автомо-
биля, выполняющей сразу несколько весо-
мых функций, является, конечно же, диф-
ференциал, основная задача которого – пе-
редача, изменение и распределение крутя-
щего момента между колёсами или мо-
стами, что способствует их вращению с 
разной угловой скоростью, а это, как из-
вестно, чрезвычайно важно при поворотах 
или движении по неровной поверхности 
[12]. 

В зависимости от вида зубчатой пере-
дачи различают несколько типов диффе-
ренциалов (рис. 1), причем каждый из них 
обладает определенным рядом досто-
инств.  

 
Рис. 1. Типы дифференциалов 

Fig. 1. Types of differentials 
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Состояние дифференциала, как и дру-
гих агрегатов трансмиссии, должно регу-
лярно оцениваться в рамках технической 
диагностики автомобиля [13], поскольку 
исправность этого узла напрямую влияет 
на реализуемую тягу, динамическую 
устойчивость и управляемость машины 
[14], особенно в условиях переменного 
сцепления и различных режимов движе-
ния. При нарушении работоспособности 
механизма возникает значительная раз-
ница угловых скоростей колес. В этом 
случае сателлиты начинают интенсивно 
вращаться на своих осях, что увеличивает 
нагрузку на контактирующие поверхно-
сти. Чем выше частота вращения сателли-
тов, тем быстрее разрушается масляная 
пленка между элементами пары трения. В 
результате масло перегревается и ча-
стично испаряется, ухудшая условия сма-
зывания, что приводит к переходу от гид-
родинамического трения к граничному и 
полусухому. Такие режимы вызывают по-
явление задиров и схватываний на поверх-
ности осей и отверстий сателлитов. Даль-
нейшая эксплуатация повреждённого узла 
только увеличивает число дефектов и мо-
жет привести к заклиниванию сателлитов 
и разрушению деталей [15].  

При перегрузках дифференциал фак-
тически выходит за рамки нормального 
режима работы. Интенсивное вращение 
сателлитов наблюдается в моменты, когда 
полуосевые шестерни имеют различную 
угловую скорость, например при прохож-
дении поворотов. Рост скоростей приво-
дит к увеличению контактных давлений и 
последующему нарушению смазывания 
пары «сателлит – ось». В нормальных 

условиях смазка подается за счёт разбрыз-
гивания масла внутри картера, однако при 
длительных перегрузках образующаяся 
масляная пленка теряет устойчивость. Это 
вызывает образование зон микро- и мак-
росхватывания (рис. 2), которые продол-
жают развиваться даже после восстанов-
ления равенства скоростей колес. На по-
следующих этапах эксплуатации дефекты 
способны привести к внезапному клиню 
сателлита и разрушению оси или корпуса 
дифференциала. Таким образом, даже 
кратковременная пробуксовка может 
иметь отсроченные последствия, проявля-
ющиеся уже при последующей штатной 
работе механизма, что подтверждает меж-
молекулярную природу адгезионного 
прихвата.  

Дополнительной проблемой является 
рост зазора в сопряжении пары «сателлит – 
ось», возникающий при значительном из-
носе этих элементов. Это приводит к сме-
щению пятна контакта между зубьями са-
теллитов и полуосевыми шестернями 
(рис. 3). При отклонении геометрии кон-
такта нагрузка перераспределяется нерав-
номерно, появляются пластические де-
формации зубьев, а в дальнейшем воз-
можны их разрушения и выход дифферен-
циала из строя. 

Следует учитывать, что разрушения 
мостов и дифференциалов могут быть вы-
званы не только естественным износом, 
но и нарушением эксплуатации, в частно-
сти неправильным использованием си-
стем блокировки межколесных и меж- 
осевых дифференциалов в движении  
(рис. 4). 
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Рис. 2. Износ оси сателлитов переднего моста специального колесного шасси  

вследствие нарушения скоростей движения 

Fig. 2. Wear of the axis of the satellites of the front axle of a special wheeled chassis due to speed 

violations 

 

Рис. 3. Смещение пятна контакта в зацеплении шестерни и пластическая деформация  

зубьев шестерни полуоси 

Fig. 3. Displacement of the contact spot in the gear engagement and plastic deformation of the  

 teeth of the half-axle gear 

Место контакта 
сателлита с осью 
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Рис. 4. Разрушение корпуса редуктора переднего моста вследствие включения блокировки  

межколесного дифференциала во время движения 

Fig. 4. The destruction of the gearbox housing of the front axle, as a result of the activation of the locking  

 of the inter-wheel differential during movement 

Экспериментальная часть исследова-
ния включала испытания как модельных 
образцов, так и реальной пары трения «са-
теллит – ось» дифференциала переднего 
моста специального колесного шасси типа 
«Тягач». Износостойкость оценивалась с 
применением АСНИ – автоматизирован-
ной системы, созданной на базе серийной 
машины трения МИ-1М, оснащённой 
нагружающим устройством собственной 
разработки. При проведении работы были 
использованы современные методы опре-
деления физико-механических характери-
стик поверхностного слоя, анализа струк-
туры и химического состава материалов, а 
также параметры, описывающие интен-
сивность изнашивания. 

Модификация поверхностных слоев 
деталей, упрочнённых карбидами воль-
фрама методом имплантации и компози-
ционного насыщения (технология 
ИКЭМО), осуществлялась на специализи-
рованной установке. Для анализа процес-
сов трения и изнашивания был применён 
подход, учитывающий влияние шерохова-
тости и свойств поверхностного слоя на 
параметры контактного взаимодействия. 

Расчёты сводились к определению крити-
ческого сближения поверхностей, при ко-
тором фактическая площадь контакта спо-
собна выдержать приложенную нагрузку. 
Сопоставление расчетных данных с экспе-
риментальными показало корректность 
выбранной модели и её применимость для 
оценки поведения цилиндрических пар 
трения при различных режимах нагруже-
ния. 

В реализации технологии ИКЭМО 
ключевую роль играет специализирован-
ный источник питания с фазоимпульсным 
регулированием, позволяющий вести 
электромеханическую обработку на пере-
менном токе промышленной частоты. 
Конструктивно он представляет собой 
комплексный прибор, включающий сило-
вой трансформатор, тиристорный узел 
коммутации и программируемый микро-
процессорный модуль управления, обес-
печивающий точное согласование пара-
метров обработки с режимами работы ме-
таллообрабатывающего оборудования. 

Процесс комбинированной электро-
механической обработки включает в себя 
5 этапов:
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Весь технологический процесс вы-
полняется в рамках одной операции с де-
талью, что существенно уменьшает влия-
ние технологической цепочки СПИЗ (ста-
нок – приспособление – инструмент – за- 

готовка) и обеспечивает более стабильные 
характеристики качества готовой поверх-
ности. Внешний вид обработанных образ-
цов и схема ЭМО представлены на ри-
сунке 5.

 

   а       б 

Рис. 5. Установка для ИКЭМО: а – процесс электромеханического упрочнения;  

б – образец после обработки 

Fig. 5. Installation for IKEMO: a – electromechanical hardening process;  

 б – sample after processing 
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На итоговые свойства упрочнённых 
поверхностей главным образом влияет 
способ распределения и морфология кар-
бидной дисперсной фазы. Композицион-
ный эффект упрочнения связан с перерас-
пределением элементов, возникающим 
при распаде пересыщенных твёрдых рас-
творов, формирующихся в результате вы-
сокоскоростных термических циклов. При 
электромеханической обработке скорости 
нагрева и охлаждения оказываются сопо-
ставимы с режимами высокоскоростной 
закалки, что приводит к существенному 
измельчению аустенитного зерна и обра-
зованию мелкокристаллических структур 
с повышенными физико-механическими 
характеристиками. 

Сравнительные испытания, выпол-
ненные нормализованным методом, поз-
волили оценить износостойкость модифи-
цированной стали 45 в сопоставлении с 
современными покрытиями, требующими 
сложных технологических операций и ис-
пользования дефицитных материалов. 
Выбор стали 45 обусловлен её техноло-
гичностью и экономической оправданно-
стью: применение дорогих легированных 
сталей для изготовления детали целиком 
нецелесообразно, тогда как модифициро-
вание поверхностного слоя позволяет су-
щественно улучшить её эксплуатацион-
ные характеристики при минимальных за-
тратах. 

В рамках первого этапа комбиниро-
ванного воздействия осуществляется 
внедрение частиц карбида вольфрама из 
графитовой обмазки. Поверхность детали 
последовательно обкатывается роликом 
из стали 95Х18, под действием нагрузки и 
локальной пластической деформации ча-
стицы упрочнителя перемещаются в зону 
контакта и включаются в формируемый 
поверхностный слой. 

На втором этапе применяется ролик 
из псевдосплава карбида вольфрама с ме-
дью. Такая конструкция позволяет одно-

временно реализовать высокие механиче-
ские давления и импульсные тепловые 
воздействия. В момент прохождения элек-
трического импульса происходит локаль-
ная аустенизация поверхностного слоя 
стали, одновременно углерод, содержа-
щийся в графитовой обмазке, диффунди-
рует в поверхностную зону. В результате 
содержание углерода в аустените увели-
чивается, а карбиды вольфрама частично 
растворяются до предела насыщения твёр-
дого раствора вольфрамом. Это обеспечи-
вает формирование высокостойких струк-
тур, существенно повышающих эксплуа-
тационную стойкость детали. 

Результаты и их обсуждение 

Для достижения поставленной в ра-
боте цели решался ряд взаимосвязанных 
задач, а именно: исправление геометрии 
шипа крестовины бывшей в эксплуатации 
путем точения на токарно-винторезном 
станке; нанесение графитовольфрамовой 
обмазки на подготовленные к импланти-
рованию поверхности и ее сушка; непо-
средственно имплантирование на специ-
ально разработанной для этого процесса 
установке; упрочнение имплантирован-
ной поверхности путем обкатки двухроли-
ковой головкой; чистовое шлифование 
упрочненной поверхности шипа кресто-
вины; исследование износостойкости 
упрочненных поверхностей по стандарт-
ной методике; оценка ресурса восстанов-
ленных и упрочненных деталей. 

На рисунке 6 представлена микро-
структура поверхностного слоя, упроч-
ненного карбидом вольфрама.  

Из рисунка 6 видно, что упрочненный 
поверхностный слой имеет ярко выражен-
ную трехслойную микроструктуру: 

– слой 1, представляющий собой 
вкрапления частиц карбида вольфрама 
WC в стальную основу: толщина порядка 
250 мкм, микротвердость порядка 800 HV; 
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Рис.  6. Микроструктура модифицированного и упрочненного слоя 

Fig. 6. Microstructure of the modified and reinforced layer 

– слой 2 (рис. 7), представляющий со-
бой слабонасыщенный вольфрамом фер-
рит, по границам зерен которого выделя-
ется сетка карбида вольфрама: толщина 
порядка 200 мкм, микротвердость порядка 
600 HV; 

– слой 3 насыщен частицами карбида 
вольфрама: толщина порядка 40 мкм, мик-
ротвердость порядка 500 HV; 

– матрица из стали 45, микротвер-
дость 220 HV.

 

Рис.  7. Микроструктура покрытия в слое 2 

Fig. 7. Microstructure of the coating in layer 2 
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Экспериментально установлено, что 
применение комбинированной обработки 
восстановления и упрочнения изношен-
ных деталей целесообразно для цилиндри-
ческих поверхностей трения диаметром 
20…200 мм, изготовленных из средне- и 

высокоуглеродистых сталей, в том числе 
легированных и инструментальных. 

Результаты исследований были при-
менены к паре трения «сателлит – ось са-
теллита» дифференциала переднего моста 
специального колесного шасси грузового 
автомобиля (рис. 8).

 

       а           б 

Рис. 8. Детали восстановленного и упрочненного дифференциала: а – в сборе; б – оси сателлитов 

Fig. 8. Details of the restored and reinforced differential: a – assembled; б – satellite axles 

Сравнительные испытания износо-
стойкости пары трения «сателлит – ось са-
теллита» (заводская технология и комби-
нированная) проводились на стенде для 
испытаний переднего моста, созданном на 
АО «Брянский автомобильный завод». По 
результатам испытаний, интенсивность 
изнашивания пары трения «сателлит – ось 
сателлита» по заводской технологии со-
ставила  ��� = 8,46·10-10, а изготовленной с 
применением технологии ИКЭМО – ��� = 4,08 ∙ 10-10.  

На основании проведенных исследо-
ваний, направленных на повышение изно-
состойкости деталей дифференциала 
трансмиссии автомобиля, установлено, 
что свойства восстановленных и упроч-
ненных поверхностей крестовины диффе-
ренциала зависят от состава и структуры 
сформированного поверхностного слоя 
путем имплантирования вольфрамсодер-
жащих материалов и последующей об-

катки двухроликовой головкой. В частно-
сти установлено, что износостойкость ра-
бочих поверхностей деталей, восстанов-
ленных и упрочненных по новой комби-
нированной технологии, увеличивается в 
2,07 раза по сравнению с новыми при со-
поставимом увеличении ресурса.  

Заключение 

Поставленная цель достигнута, а 
именно решена проблема повышения из-
носостойкости деталей дифференциала 
трансмиссии автомобиля путем их им-
плантирования с последующей обработ-
кой поверхностно-пластической деформа-
цией. Полученные в данной работе ре-
зультаты работы могут найти практиче-
ское применение при организации ресур-
сосберегающих и импортозамещающих 
технологий, которые, в свою очередь, бу-
дут способствовать созданию высокотех-
нологичных производств. 
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Резюме 

Цель. Оптимизация технологии спекания шихты, полученной методом электроэрозионного диспергирова-

ния отходов безвольфрамовых твердых сплавов в углеродсодержащей рабочей среде. 

Методы. В качестве исходного материала для исследований были выбраны отходы безвольфрамового 

твердого сплава. Процесс диспергирования проводили в углеродсодержащей рабочей жидкости – метаноле. 

Для осуществления электроэрозионного диспергирования использовалась установка, конструкция которой 

защищена патентом Российской Федерации №2449859. 

Электроэрозионные частицы были консолидированы с использованием установки для искрового плазмен-

ного спекания Spark Plasma Sintering system Model 25-10 (SPS 25-10), произведенной компанией Thermal 

Technology.  

Подбор режимов консолидации (температуры, давления и времени выдержки) для нового сплава осуществ-

ляли по критерию достижения максимальной микротвердости спеченных образцов с применением метода 

полного факторного эксперимента типа 2³. 

Результаты. Проведенные измерения показали, что микротвердость образцов, спеченных методом SPS 

из порошка, диспергированного в среде метилового спирта, в среднем равна 1415 HV. 

Заключение. Методом полного факторного эксперимента типа 2³ проведена оптимизация параметров 

процесса синтеза безвольфрамового твердого сплава методом искрового плазменного спекания по крите-

рию микротвердости готовых образцов. Варьируемыми факторами выступали ключевые параметры ра-

боты установки SPS: температура, давление и время выдержки. Оптимизация проводилась для матери-

ала, полученного путем электроэрозионного диспергирования отходов БВТС в углеродсодержащей среде 

(метаноле). 

По результатам серии экспериментов определены оптимальные режимы спекания, обеспечивающие до-

стижение максимальных значений микротвердости. Максимальная микротвердость композита с электро-

эрозионными частицами, полученными в среде метанола, достигла 1427 HV, что на 17% выше, чем у базо-

вого промышленного сплава. Этот максимум был зафиксирован после спекания при 1200°C под давлением 

40 МПа с 5-минутной выдержкой. 
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персность; оптимизация; полный факторный эксперимент. 
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Abstract 

Purpose. Optimization the sintering process of an electroerosion charge obtained by the method of electroerosion 

dispersion of tungsten-free hard alloy  waste in an carbon-containing working fluid. 

Methods. Tungsten-free carbide waste was selected as the starting material for the study. The dispersion process was 

carried out in a carbon-containing working fluid—methanol. A setup whose design is protected by Russian Federation 

Patent No. 2449859 was used for electrical discharge dispersion. 

The electro-erosion particles were consolidated using the Spark Plasma Sintering system Model 25-10 (SPS 25-10) 

manufactured by Thermal Technology.  

The consolidation modes (temperature, pressure, and exposure time) for the new alloy were selected based on the 

criterion of achieving the maximum microhardness of the sintered samples using the 2³ full factorial experiment method. 

Results. The measurements carried out showed that the microhardness of samples sintered by the SPS method from 

powder dispersed in a methyl alcohol medium is on average 1415 HV. 

Conclusion. The determination of optimal parameters of the process of obtaining tungsten-free hard alloy by spark 

plasma sintering of particles according to the microhardness of sintered samples by conducting a full factor experiment 

of type 23 has been carried out. The following parameters of the spark plasma sintering unit have been selected as 

factors: temperature, pressure and holding time. Optimal parameters of the unit operation have been determined for 

the electroerosion material previously obtained from TFHA waste in carbon-containing medium - distilled water. 

Based on the results of a series of experiments, the optimal sintering conditions were determined to achieve the max-

imum microhardness values. The maximum microhardness of the composite with electro-eroded particles obtained in 

a methanol environment reached 1427 HV, which is 17% higher than that of the base industrial alloy. This maximum 

was achieved after sintering at 1200 °C under a pressure of 40 MPa with a 5-minute exposure. 

Keywords: tungsten-free hard alloys; electrical discharge dispersion; charge; dispersion; optimization; full factorial 

experiment. 
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***
Введение 

В современных промышленных усло-
виях спеченные твердые сплавы находят 
широкое применение, в том числе при из-
готовлении строительной техники и обо-
рудования. Одной из значимых проблем 
является сокращение расхода дорогостоя-
щего и дефицитного вольфрама. В каче- 

стве решения данной задачи разработаны 
безвольфрамовые твердые сплавы, основу 
которых составляют карбиды и карбидо-
нитриды переходных металлов, в первую 
очередь титана [1–3]. 

Актуальность переработки и повтор-
ного использования (рециклинга) таких 
сплавов обусловлена присутствием в их 
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составе ценных и дорогостоящих элемен-
тов, таких как титан, никель и молибден. 
Одним из наиболее перспективных мето-
дов измельчения электропроводных мате-
риалов, не нашедших пока широкого про-
мышленного применения, является метод 
электроэрозионного диспергирования 
(ЭЭД), который позволяет эффективно об-
рабатывать материалы независимо от их 
твердости, прочности и иных физико-ме-
ханических характеристик [4–6]. 

Для достижения высоких показателей 
физико-механических свойств спеченных 
изделий, производимых из электроэрози-
онной шихты (частиц, полученных мето-
дом ЭЭД) безвольфрамовых твердых 
сплавов, необходима оптимизация режим-
ных параметров процесса сплавления. В 
данной работе для решения этой задачи 
применяется метод планирования полного 
факторного эксперимента [7–8]. 

Целью исследования является опти-
мизация технологии спекания шихты, по- 

лученной методом электроэрозионного 
диспергирования отходов безвольфрамо-
вых твердых сплавов (БВТС) в углеродсо-
держащей рабочей среде.  

Материалы и методы 

В качестве исходного материала для 
исследований были выбраны отходы без-
вольфрамового твердого сплава. Процесс 
диспергирования проводили в углеродсо-
держащей рабочей жидкости – метаноле. 
Для осуществления электроэрозионного 
диспергирования использовалась уста-
новка, конструкция которой защищена па-
тентом Российской Федерации № 2449859 
[9; 10]. 

Консолидация полученных электро-
эрозионных частиц осуществлялась на 
оборудовании для искрового плазменного 
сплавления Spark Plasma Sintering system 
Model 25-10 (SPS 25-10) производства 
Thermal Technology [11–14] (рис. 1).

 

Рис. 1. Установка для искрового плазменного сплавления Spark Plasma Sintering system Model 25-10 

(SPS 25-10) 

Fig. 1. Thermal Technology Spark Plasma Sintering system Model 25-10 (SPS 25-10) 
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Оптимизация параметров консолида-
ции нового сплава (температура, давле-
ние, время выдержки) проводилась по 
критерию микротвердости спеченных об-
разцов с применением методики полного 
факторного эксперимента типа 23 [15]. 

Для анализа влияния указанных фак-
торов и построения математической мо-
дели процесса синтеза безвольфрамового 
твердого сплава методом искрового плаз-
менного сплавления использовалась поли-
номиальная модель первого порядка  

ŷ = b0 + b1X1 + b2X2 + b3X3 + b12X1X2 + 
 b13X1X3 + b23X2X3 + b123X1X2X3,    (1) 

где X1, X2, X3 – кодированные значения 
факторов: температуры (T, °C), давления 
(P, МПа) и времени выдержки (t, мин) со-
ответственно, а ŷ – выходная переменная 
(микротвердость) [16; 17]. 

В работе были определены основные 
и варьируемые уровни факторов (табл. 1) 
и построена соответствующая матрица 
планирования эксперимента (рис. 2). 

Таблица 1. Уровни и интервалы варьирования 

Table 1. Levels and intervals of variation 

Уровень варьируемых факторов  
Level of variable factors 

Обозначение кодовое  
Code designation 

Т, ºС Р, MПa t, мин 
X1 X2 X3 

Основной уровень / Main level 0 625 30 6 

Интервал варьирования / Variation 
interval 

Δxi 400 10 4 

Верхний уровень / Top level +1 1050 40 10 

Нижний уровень / Lower level -1 200 20 2 

 

 
Рис. 1. Матрица планирования эксперимента 

Fig. 1. Experiment planning matrix 

На основе проведенных расчетов 
было получено уравнение регрессии, мо-
делирующее полный факторный экспе- 

римент для спекания полученной шихты 
[18].  
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�� = 1041,04 + 213,79�� + 53,46�� + +106,87�� − 0,12���� − 0,21X��� − −0,37���� + 0,21������.       (2) 
 

Статистический анализ значимости 
коэффициентов регрессии показал, что ко-
эффициенты при парных и тройных взаи-
модействиях (b12, b13, b23, b123) являются 
статистически незначимыми. После их ис-
ключения уравнение регрессии было 
упрощено до вида 

 

�� = 1041,04 + 213,79�� + +53,46�� + 106,87��.              (3) 
 

Полученные модели были использо-
ваны для проведения процедуры крутого 
восхождения по поверхности отклика. 
Для сплавления шихты исходной точкой 
восхождения был выбран основной уро-
вень факторов: X1 = 625°C, X2 = 30 МПа, 
X3 = 6 мин. Расчет шагов и результаты экс-
периментов крутого восхождения пред-
ставлены в таблице 2. 

Таблица 2. Результаты крутого восхождения 

Table 2. Calculation of steep ascent 

Наименование  
Name 

Х1 
(Т, °C) 

Х2 
(Р, МПа) 

Х3 
(t, мин) 

Y 
HV 

Основной уровень  
Main level 

1050 30 4 − 

Коэффициент bi 
Coefficient bi 

213,79 53,46 106,87 − 

Интервал варьирования ξi 
Variation interval ξi 

150 10 1 − 

bi • ξi 32068,5 534,6 106,87 − 

Шаг ∆i 
Step ∆i 

320,685 5,36 1,0687 − 

Округленный шаг 
Rounded step 

321 5 1 − 

Реализованный опыт 1 
Implemented experiment 1 

1200 35 5 1388,43 

Реализованный опыт 2  
Implemented experiment 2 (max) 1200 40 5 1415,16 

 
В результате серии экспериментов 

были определены экстремальные значе-
ния параметра оптимизации – микротвер-
дости (Y). Для образцов, полученных из 
частиц, диспергированных в спирте мети-
ловом, максимальное значение микро-
твердости составило 1415,16 HV при сле-
дующих режимах спекания: температура 
T = 1200°C, давление P = 40 МПа, время 
выдержки t = 5 мин. 

Измерение микротвердости спечен-
ных образцов проводилось на автоматиче-
ской системе анализа DM-8 методом Вик- 

керса в соответствии с ГОСТ 9450-76. 
Нагрузка на индентор составляла 50 г, 
время выдержки под нагрузкой 15 с. Для 
каждого образца было выполнено по де-
сять измерений в произвольно выбранных 
точках. 

Результаты и их обсуждение 

Результаты измерений микротвердо-
сти полученных образцов нового безволь-
фрамового твердого сплава представлены 
в таблице 3.
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Таблица 3. Микротвердость образцов по Виккерсу 

Table 3. Vickers microhardness 

Номер эксперимента 
Experiment No. 

Микротвердость по Виккерсу  
Vickers microhardness 

1 1318 
2 1505 
3 1412 
4 1187 
5 1474 
6 1371 
7 1537 
8 1443 
9 1599 

10 1303 
Среднее значение (в единицах) HV 
Average value (units) HV 

1415 

 

Экспериментально установлено, что 
среднее значение микротвердости образ-
цов, полученных методом искрового плаз-
менного сплавления из электроэрозион-
ных частиц, диспергированных в дистил-
лированной воде, составляет 1415 HV. 

Выводы 

1. Методом полного факторного экс-
перимента типа 23 проведена оптимизация 
параметров процесса синтеза безвольфра-
мового твердого сплава методом искро-
вого плазменного сплавления по крите-
рию микротвердости готовых образцов. 
Варьируемыми факторами выступали 
ключевые параметры работы установки 
SPS: температура, давление и время вы- 

держки. Оптимизация проводилась для 
материала, полученного путем электро-
эрозионного диспергирования отходов 
БВТС в углеродсодержащей среде (спирте 
метиловом). 

2. По результатам серии эксперимен-
тов определены оптимальные режимы 
спекания, обеспечивающие достижение 
максимальных значений микротвердости. 
Максимальная микротвердость композита 
с электроэрозионными частицами, полу-
ченными в среде метанола, достигла  
1427 HV, что на 17% выше, чем у базового 
промышленного сплава. Этот максимум 
был зафиксирован после спекания при 
1200°C под давлением 40 МПа с 5-минут-
ной выдержкой.
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Сравнительный анализ химического состава металлоотходов  

из быстрорежущей стали и электроэрозионного порошка 

Е.В. Агеев1, М.Ю. Степанов1, И.Р. Гладских1, В.В. Мищенко1,  

Н.В. Табольская1 
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  ул. 50 лет Октября, д. 94, г. Курск 305040, Российская Федерация 

 e-mail: hard-bass2016@yandex.ru 

Резюме 

Цель. Данная работа ориентирована на сопоставительный анализ химической структуры двух типов ма-

териалов: металлических отходов, образующихся при использовании сверлильного инструмента, и порош-

кообразного продукта, полученного в результате электроэрозионного разрушения и диспергирования ука-

занных отходов. 

Методы. В рамках экспериментальной части исследования в качестве объекта анализа были использо-

ваны металлические отходы, образованные при интенсивном износе сверлильного инструмента без уста-

новленной маркировки. Количественное содержание химических элементов и их долевое распределение в 

материале определялось с применением портативного рентгенофлуоресцентного анализатора Niton 

Goldd производства США. Процедура измерений основывалась на облучении образца рентгеновским пучком 

с последующей регистрацией спектрального отклика и интерпретацией параметров индуцированного 

флуоресцентного излучения.  

При облучении материала рентгеновскими квантами в его атомной структуре возбуждались электромаг-

нитные колебания, в результате чего возникало вторичное излучение. Спектр этого излучения содержал 

набор характерных пиков, индивидуальных для атомов каждого химического элемента. Идентификация 

элементного состава осуществлялась по положению этих спектральных линий, тогда как массовую долю 

компонентов определяли на основе их интенсивности. 

Результаты. Использование портативного спектрометра Niton Goldd позволило установить, что метал-

лоотходы из свёрл принадлежат к сплаву марки Р6М5К5. Полученные результаты дали возможность одно-

значно идентифицировать исследуемые отходы, предназначенные для последующей переработки с приме-

нением электроэрозионного метода, в результате которого формируются порошкообразные частицы 

преимущественно сферической формы. Полученные материалы обладают высоким прикладным потенциа-

лом и могут эффективно использоваться в технологиях аддитивного изготовления изделий. 

Сопоставительное исследование удельного содержания химических компонентов в металлоотходах из 

сверл и полученном электроэрозионном порошке выявил небольшие изменения: увеличение содержания же-

леза , кобальта , никеля и олова ), а также произошло снижение концентрации вольфрама , молибдена , 

хрома и ванадия . 

Заключение. Переработка металлоотходов, включая отходы из быстрорежущих сталей, имеет важное 

значение для рационального использования ресурсов, снижения зависимости от импорта, укрепления тех-

нологического суверенитета Российской Федерации. 
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Abstract 

Purpose. This work is focused on a comparative analysis of the chemical structure of two types of materials: metal 

waste generated when using drilling tools, and a powdered product obtained as a result of electroerosion destruction 

and dispersion of these wastes. 

Methods. As part of the experimental part of the study, metal waste generated during intensive wear of drilling tools 

without an established marking was used as an object of analysis. The quantitative content of chemical elements and 

their fractional distribution in the material were determined using a portable Niton Goldd X-ray fluorescence analyzer 

manufactured in the USA. The measurement procedure was based on irradiating the sample with an X-ray beam, 

followed by recording the spectral response and interpreting the parameters of the induced fluorescent radiation.  

When the material was irradiated with X-ray quanta, electromagnetic vibrations were excited in its atomic structure, 

resulting in secondary radiation. The spectrum of this radiation contained a set of characteristic peaks, individual for 

the atoms of each chemical element. The elemental composition was identified by the position of these spectral lines, 

while the mass fraction of the components was determined based on their intensity. 

Results. The use of a portable Niton Goldd spectrometer made it possible to establish that the metal waste from the 

drills belongs to the alloy grade P6M5K5. The results obtained made it possible to uniquely identify the waste under 

study, intended for subsequent processing using the electroerosion method, which results in the formation of powdery 

particles of a predominantly spherical shape. The obtained materials have high application potential and can be effec-

tively used in additive manufacturing technologies. 

A comparative study of the specific content of chemical components in metal waste from drills and the resulting elec-

troerosion powder revealed small changes: an increase in the content of Iron, Cobalt, Nickel and Tin, as well as a 

decrease in the concentration of Tungsten, Molybdenum, Chromium and Vanadium. 

Conclusion. Recycling of metal waste, including waste from high-speed steels, is important for: rational use of re-

sources, reducing dependence on imports, and strengthening the technological sovereignty of the Russian Federation. 

Keywords: metal waste; drills; X-ray fluorescence analysis; elemental analysis. 
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Введение 

В сфере аддитивного производства 
остро стоит задача организации отече-
ственного выпуска сферических порош-
ков специального класса в малых партиях 
и с заданной зернистостью [1]. Особое 
значение имеет изготовление быстроре-
жущих сплавов методами аддитивных 
технологий [2], поскольку такие сплавы 
востребованы во многих отраслях про-
мышленности. 

Ценные эксплуатационные характе-
ристики быстрорежущих сплавов обеспе-
чиваются введением легирующих элемен-
тов – вольфрама, молибдена и кобальта 
[3]. В условиях импортных ограничений 
рециклинг металлоотходов [4], содержа-
щих эти металлы, становится ключевым 
фактором ресурсосбережения и достиже-
ния технологической независимости [5]. 

Развитие аддитивных технологий в 
производстве быстрорежущих сплавов 
способствует укреплению промышленно-
сти и экономической устойчивости. Внед-
рение передовых решений и повышение 
качества продукции расширяют возмож-
ности выхода на международные рынки 
[6], а подготовка квалифицированных спе-
циалистов обеспечивает эффективное ре-
шение производственных задач [7]. 

Одним из наиболее перспективных 
направлений утилизации металлических 
отходов является применение электроэро-
зионной технологии диспергирования 
(ЭЭД) [8]. Данный процесс в настоящее 
время успешно конкурирует с альтерна-
тивными методами получения металличе-
ских порошковых материалов, включая 
синтез нанодисперсных частиц [9], благо-
даря ряду существенных преимуществ: 
высокой экологической безопасности, а 
также получению частиц с высокой степе-
нью дисперсности – от субмикронных раз-
меров до наноструктурированных фрак-
ций. 

Преобразование быстрорежущих 
сплавов в порошкообразное состояние с 
использованием электроэрозионного дис-
пергирования представляет собой акту-
альную научно-практическую задачу [10]. 
Вместе с тем характеристики получаемого 
порошка главным образом зависят от со-
става и структуры исходного материала, а 
их влияние на процесс пока изучено недо-
статочно. 

Основной задачей настоящего иссле-
дования является определение и оценка 
элементного состава металлических отхо-
дов, образующихся при эксплуатации 
сверлильного инструмента, до их перера-
ботки с использованием электроэрозион-
ного диспергирования, с целью получения 
сферических порошковых материалов, 
пригодных для применения в технологиях 
аддитивного изготовления изделий. 

Материалы и методы 

Экспериментальные исследования 
элементного состава методом рентгено-
флуоресцентной спектроскопии выполня-
лись на образцах металлических отходов, 
использованных в качестве исследуемого 
материала, представленных фрагментами 
свёрл из неизвестного по марке сплава. На 
рисунке 1 показаны данные фрагменты.  

В настоящем исследовании для опре-
деления химического состава был исполь-
зован метод рентгенофлуоресцентной 
спектроскопии, который выбран благо-
даря высокой оперативности проведения 
измерений и сохранности исследуемых 
образцов [11]. Принцип метода заключа-
ется в анализе спектрального распределе-
ния вторичного излучения, которое фор-
мируется в материале под действием рент-
геновского облучения. Уникальные спек-
тральные пики, присущие отдельным эле-
ментам, используются для определения 
качественного состава образца, тогда как 
величина их интенсивности служит осно-
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вой для количественной оценки содержа-
ния компонентов [12]. Информация о ре-
альном химическом составе сплава была 
получена с использованием портативного 

рентгенофлуоресцентного анализатора 
Niton Goldd (производство США), внеш-
ний вид которого представлен на рисун- 
ке 2. 

 

Рис. 1. Фрагменты металлоотходов из изношенных сверлильных инструментов 

Fig. 1. Fragments of metal waste from worn-out drilling tools 

 
Рис. 2. Переносной прибор для рентгенофлуоресцентного анализа Niton Goldd 

Fig. 2. Portable X-ray fluorescence analysis device Niton Goldd 

Niton Goldd – рентгенофлуоресцент-
ный спектрометр экспертного класса, 
предназначенный для быстрого и точного 
определения элементного состава различ-
ных материалов в качественном и количе-
ственном выражении [13]. Ключевым до-
стоинством прибора является неразруша- 

ющий метод анализа на основе энергети-
ческой дисперсии, сохраняющий целост-
ность образца [14]. Это свойство критиче-
ски важно, когда необходимо сохранить 
первозданные характеристики исследуе-
мого объекта. 
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Принципиальным преимуществом 
Niton Goldd выступает его безопасность 
для образцов. В отличие от химического 
анализа, который может приводить к из-
менению структуры материала, рентгено-
флуоресцентный анализ обеспечивает со-
хранность исходных свойств [15]. 

Спектрометр Niton Goldd отличается 
высокой скоростью проведения анализа. 
Получение прецизионных данных зани-
мает считанные секунды, что значительно 
ускоряет рабочий процесс и повышает 
производительность. Мобильность и воз-
можность проведения анализа непосред-
ственно на объекте позволяют оперативно 
принимать решения и сокращают сроки 
ожидания результатов. Эти факторы опре-
деляют эффективность прибора при ра-
боте с редкими или деликатными матери-
алами, малейшее изменение которых мо-
жет критически отразиться на их ценности 
[16]. 

 

Устройство оборудовано встроенной 
цифровой камерой, обеспечивающей ви-
зуализацию зоны анализа непосред-
ственно на дисплее. Наличие режима кол-
лимации Small Spot позволяет оперативно 
и с высокой точностью проводить иденти-
фикацию элементов в диапазоне от Mg до 
U на участке диаметром около 3 мм без 
применения дополнительной оптики. 
Прибор обладает высокой чувствительно-
стью к лёгким элементам (Mg, Al, Si, P, S) 
и пригоден для исследования металличе-
ских сплавов, включая алюминиевые, а 
также геологических и почвенных образ-
цов, полимерных материалов и других ти-
пов сред [17]. 

Результаты и их обсуждение 

Результаты экспериментальных ис-
следований, отражающие как качествен-
ную, так и количественную характери-
стику химического состава образцов ана-
лизируемых металлоотходов, приведены в 
таблице 1. 

Таблица 1. Итоги аналитического изучения проб металлических отходов 

Table 1. Results of the analytical study of metal waste samples 

Химический элемент 
A chemical element 

Процентное  
содержание, % 

Percentage content, % 

Погрешность  
измерения, ±2δ 

Measurement error, 2δ 
Fe 72,0 1,8 
W 8,1 1,5 
Co 4,78 0,89 
Mo 6,08 0,32 
Cr 5,03 0,76 
V 2,33 0,83 
С 0,90 – 
Cu 0,49 0,25 
Mn 0,41 0,37 
Ni 0,38 0,29 
Si 0,35 – 
Zr 0,306 0,045 
Pb 0,177 0,093 

Идентификация марки исследуемой 
стали проводилась на основе методиче- 

ского алгоритма, схема которого приве-
дена на рисунке 3. 



Агеев Е.В., Степанов М.Ю., Гладских И.Р. и др.                      Сравнительный анализ химического состава… 35 

Известия Юго-Западного государственного университета. Серия: Техника и технологии /  
Proceedings of the Southwest State University. Series: Engineering and Technologies. 2025;15(4):30–42 

 

Рис. 3. Последовательная методика идентификации марки исследуемой стали на основе справочника  

сталей и сплавов 

Fig. 3. A consistent method for identifying the grade of the steel under study based on the directory of steels  

 and alloys. 
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В соответствии с ранее разработан-
ным и представленным алгоритмом было 
установлено, что материал режущего ин-
струмента относится к быстрорежущему 
сплаву марки Р6М5К5. В дальнейшем из 
металлоотходов указанного сплава осу-
ществляли получение порошкового мате-
риала путём последовательной реализа-
ции ряда технологических операций. 

На начальном этапе проводили ком-
плексную предварительную подготовку 
металлических отходов, включающую их 
промывку, термическую сушку, операцию 
обезжиривания и контрольное взвешива-
ние. Указанный этап технологического 
процесса представлен на рисунке 4. 

 

Рис 4. Контрольное взвешивание металлоотходов 

Fig. 4. Control weighing of metal waste 

Реакторный объём заполняли техно-
логической рабочей жидкостью, после 
чего установленные электроды подсоеди- 

няли к импульсному генератору. Процесс 
изготовления электродных элементов 
представлен на рисунке 5.

 

Рис. 5. Этап технологического изготовления электродных элементов 

Fig. 5. The stage of technological manufacturing of electrode elements 
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На втором этапе, связанном с элек-
троэрозионным диспергированием метал-
лоотходов сплава Р6М5К5, осуществляли 
запуск экспериментальной установки, а 
также подбор и корректировку парамет-
ров и режимов работы, обеспечивающих 
устойчивое протекание процесса диспер-
гирования. 

Третий этап, проиллюстрированный 
на рисунке 6, включал операции по удале-
нию жидкой фазы путём выпаривания, по-
следующую сушку полученной массы, 
контрольное определение её массы, а 
также фасовку и герметичную упаковку. 
После этого порошкообразный продукт 
подвергался комплексу исследователь-
ских испытаний.

 

Рис. 6. Операция концентрирования дисперсного материала путём выпаривания 

Fig. 6. The operation of concentrating dispersed material by evaporation 

Сравнительный анализ массовых до-
лей химических элементов в исследуемом 
сплаве Р6М5К5 и в порошковом матери-

але, полученном из исходного сырья мето-
дом электроэрозионного диспергирова-
ния, приведён в таблице 2.

Таблица 2. Сравнительная характеристика массовых долей химических элементов в исходных  
металлоотходах и порошковом материале, полученном методом электроэрозионного  
диспергирования 

Table 2. Comparative characteristics of the mass fractions of chemical elements in the initial metal waste and 
powder material obtained by electroerosion dispersion 

Химический элемент 
A chemical element 

Процентное содержание, % 
Percentage content, % 

исследуемого сплава 
the alloy under study 

электроэрозионного порошка 
electroerosive powder 

Fe 72,0 74,62 
W 8,1 7,15 
Co 4,78 4,85 
Mo 6,08 5,192 
Cr 5,03 3,91 
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Окончание табл 2.  

End of Table 2. 

Химический элемент 
A chemical element 

Процентное содержание, % 
Percentage content, % 

исследуемого сплава 
the alloy under study 

электроэрозионного порошка 
electroerosive powder 

V 2,33 1,85 
C 0,9 0,9 
Mn 0,41 0,38 
Ni 0,38 0,39 
Si 0,35 0,35 
Сu 0,49 0.28 
Zr 0,306 0,040 
Pb 0,177 0,093 

Результаты сравнительного анализа 
массовых долей химических элементов в 
металлоотходах сплава Р6М5К5 и порош-
ковом материале, полученном методом 
электроэрозионного диспергирования, по-
казали наличие незначительных расхож-
дений. Установлено увеличение относи-
тельного содержания Fe, Co, Ni и Sn в по-
рошке при одновременном снижении до-
лей W, Mo, Cr и V. Вероятно, выявленные 
изменения обусловлены протеканием фа-
зовых превращений [18], сопровождаю-
щихся формированием упорядоченных 
диссипативных наноструктур в веществе 
[19]. 

Полученные экспериментальные дан-
ные могут быть использованы при разра-
ботке и совершенствовании технологий 
упрочнения материалов, полученных с 
применением ресурсосберегающих под-
ходов, с целью повышения уровня их экс-
плуатационных характеристик [20]. 

Выводы 

1. При исследовании элементного со-
става металлоотходов из быстрорежущих 
сплавов, предназначенных для перера-
ботки в сферические порошковые матери-
алы методом электроэрозионного диспер-
гирования для целей аддитивного произ-
водства, применялся портативный спек-
трометр Niton Goldd. Полученные анали-
тические данные свидетельствуют о соот-
ветствии исследуемых образцов металло-
отходов сплаву марки Р6М5К5. 

2. Переработка металлоотходов, 
включая быстрорежущие сплавы, позво-
лит существенно сэкономить ресурсы, 
снизить зависимость от импорта и укре-
пить потенциал страны в сфере высоких 
технологий. 
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Состав, структура и свойства порошкового кобальта, 

полученного из металлоотходов кобальта марки К1Ау  

в среде авиационного керосина 
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Резюме 

Цель. Определение и изучение состава, структуры и свойств порошкового кобальтового материала, по-

лученного в результате электроэрозионного диспергирования металлических отходов кобальта марки 

К1Ау в рабочей среде авиационного керосина марки ТС-1. 

Методы. С целью изучения состава, структурных особенностей и характеристик кобальтовой шихты 

были получены образцы порошкообразного металлического кобальта. Для этого применяли электроэрози-

онное диспергирование отходов кобальта марки К1Ау в рабочей среде, содержащей углерод. Микрострук-

туру частиц порошка исследовали посредством растровой электронной микроскопии, а оценка грануло-

метрического состава шихты выполнялась с использованием анализатора размеров частиц. Элементный 

состав определялся методом энергодисперсионного рентгеновского анализа, реализованного на базе 

растрового электронного микроскопа. Фазовый состав шихты определялся дифрактометром методом 

рентгеновской дифракции. 

Результаты. Установлено, что сформированный мелкодисперсный порошок кобальта состоит из частиц 

преимущественно сферической и эллипсоидной формы, а также их агломератов. Примеси углерода в по-

рошке не обнаружены. Фазовый анализ показал присутствие исключительно кристаллической фазы чи-

стого кобальта без образования карбидных соединений. Согласно гранулометрическому анализу размеры 

частиц распределены в диапазоне от 0,9 до 63,77 мкм, при этом средний объемный диаметр составляет 

12,06 мкм. 

Заключение. Полученные экспериментальные данные создают научно-практическую основу для разра-

ботки принципиально новых твердых сплавов, в состав которых может входить порошок кобальта, полу-

ченный из металлоотходов методом электроэрозионного диспергирования. Представленные результаты 

открывают перспективу дальнейшего совершенствования состава и регулирования структуры вновь 

формируемых сплавов. 

 
Ключевые слова: кобальт; металлоотходы; электроэрозионное диспергирование; авиационный керосин; 

порошок; структура; свойства. 
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Composition, structure, and properties of powdered Cobalt obtained 

from K1Au cobalt metal waste in an aviation kerosene environment 
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Abstract 

Purpose. Determination and study of the composition, structure, and properties of a powdered Cobalt material obtained 

by electroerosive dispersion of K1Au Cobalt metal waste in a working environment of TS-1 aviation kerosene. 

Methods. In order to study the composition, structural features, and characteristics of the cobalt charge, samples of 

powdered metallic cobalt were obtained. This was achieved through the use of electro-discharge dispersion of K1Au 

cobalt waste in a carbon-containing working environment. The microstructure of the powder particles was examined 

using scanning electron microscopy, and the particle size distribution of the charge was assessed using a particle size 

analyzer. The elemental composition was determined by energy-dispersive X-ray analysis, implemented on the basis 

of a scanning electron microscope. The phase composition of the charge was determined by a diffractometer using X-

ray diffraction. 

Results. It has been established that the formed fine-grained cobalt powder consists of predominantly spherical and 

ellipsoidal particles, as well as their agglomerates. No carbon impurities were detected in the powder. Phase analysis 

showed the presence of a pure Cobalt crystal phase without the formation of carbide compounds. According to the 

granulometric analysis, the particle sizes are distributed in the range of 0.9 to 63.77 μm, with an average volume 

diameter of 12.06 μm. 

Conclusion. The obtained experimental data create a scientific and practical basis for the development of fundamen-

tally new hard alloys, which may include cobalt powder obtained from metal waste by the method of electro-erosion 

dispersion. The presented results open up the prospect of further improvement of the composition and regulation of 

the structure of newly formed alloys. 

Keywords: Cobalt; metal waste; electro-dispersive spraying; aviation kerosene; powder; structure; properties. 
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*** 

Введение 

В современной промышленности су-
ществует ряд инженерных задач, среди ко-
торых можно выделить повышение 
надежности, срока службы и технического 
уровня деталей машин и оборудования. 
Для решения этих задач разрабатываются 
различные методы и технологии повыше-
ния износостойкости и, соответственно, 
срока службы деталей машин и оборудо-
вания: наплавка, химико-термическое 
упрочнение, легирование, напыление и  

т. д. [1] Для повышения эксплуатацион-
ных характеристик деталей машин и обо-
рудования постоянно совершенствуется 
состав материалов и способов их изготов-
ления.  

Порошковая металлургия в настоя-
щее время занимает ключевое место в ма-
шиностроительном комплексе [2]. Доля 
изделий, получаемых с использованием 
технологий порошкового формообразова-
ния, особенно когда речь идёт о деталях 
сложной геометрии, таких как шестерни, 
подшипники и другие функциональные 
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элементы, уже превосходит объём про-
дукции, изготовляемой традиционными 
методами [3]. 

Кобальт представляет собой страте-
гически важный металл, широко применя-
емый в различных секторах промышлен-
ности. Его уникальные физико-химиче-
ские характеристики обеспечили ему осо-
бую роль в производстве инструменталь-
ной и буровой техники [4]. Одним из клю-
чевых преимуществ кобальта является его 
неспособность образовывать карбиды, что 
делает его идеальным связующим компо-
нентом при создании быстрорежущих и 
высокожаропрочных сталей [5]. Примене-
ние кобальта в роли связующего компо-
нента в составе твёрдых сплавов способ-
ствует увеличению их пластичности и 
устойчивости к динамическим воздей-
ствиям. Благодаря этому такие сплавы де-
монстрируют повышенную долговеч-
ность и способны сохранять работоспо-
собность инструмента даже при интенсив-
ных эксплуатационных нагрузках [6]. 
Сфера использования твёрдых сплавов, в 
которых кобальт выполняет функцию 
связки, выходит далеко за рамки произ-
водства режущего инструмента [7]. По-
добные материалы являются неотъемле-
мыми элементами высокотехнологичных 
отраслей – от авиационно-космического 
сектора и атомной промышленности до 
электротехнического машиностроения и 
других направлений, требующих материа-
лов с повышенными эксплуатационными 
характеристиками [8]. 

Одним из наиболее перспективных 
направлений порошковой металлургии яв-
ляется электроэрозионное диспергирова-
ние, позволяющее перерабатывать токо-
проводящие металлоотходы [9], в том 
числе дорогостоящие отходы кобальта, в 
порошковое сырьё [10]. Однако примене-
ние данной технологии затруднено отсут-
ствием достаточной теоретической базы 
по электроэрозионной переработке чи-
стого кобальта [11], а также недостатком 

научных публикаций, описывающих со-
став, структуру и свойства диспергиро-
ванных порошков мелкой фракции [12]. 

Для создания рациональной и техно-
логически обоснованной методики пере-
работки кобальтовых отходов посред-
ством электроэрозионного диспергирова-
ния, а также для получения высокодис-
персного порошкового материала и 
оценки его перспектив для последующего 
использования требуется проведение ком-
плексных исследований, включающих как 
теоретические, так и экспериментальные 
этапы [13]. 

Целью исследования является всесто-
роннее изучение состава, структурных ха-
рактеристик и физических свойств мелко-
дисперсного порошка кобальта, сформи-
рованного при электроэрозионном разру-
шении металлических отходов марки 
К1Ау в среде авиационного керосина  
ТС-1.  

Материалы и методы 

Объектом исследования, в рамках ко-
торого выполнялась оценка состава, 
структуры и эксплуатационных характе-
ристик материала, служил образец высо-
кодисперсного порошка металлического 
кобальта. Данный порошок был получен в 
результате электроэрозионного разруше-
ния отходов кобальта в рабочей среде 
авиационного керосина ТС-1. Процесс 
формирования порошка реализовывался 
на специализированной установке элек-
троэрозионного диспергирования, защи-
щённой патентом [14]. 

Производство мелкодисперсного ко-
бальтового порошка требует соблюдения 
определённых технологических режимов 
работы оборудования. На ранних этапах 
исследования подбор рабочих параметров 
установки осуществлялся в эксперимен-
тальном порядке. Схематическое пред-
ставление параметров процесса электро-
эрозионного диспергирования приведено 
на рисунке 1. 
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Рис. 1. Параметры работы установки электроэрозионного диспергирования 

Fig. 1. Operating parameters of the electroerosion dispersion unit 

Реализация поставленной цели потре-
бовала выполнения комплекса взаимосвя-
занных исследовательских задач, для ре-
шения которых был задействован ряд спе- 

циализированных приборов и установок 
[15–19]. Схематическое представление 
применённого исследовательского обору-
дования приведено на рисунке 2. 

 

Рис. 2. Аппаратурный комплекс, предназначенный для исследования физических и структурных свойств  

  материала 

Fig. 2. An equipment complex designed to study the physical and structural properties of a material 
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Результаты и их обсуждение 

На рисунке 3 приведены результаты 
комплексного анализа, включающего ис-

следование микроструктуры и выполне-
ние рентгеноспектрального микроанализа 
(РСМА) кобальтового порошкового мате-
риала. 

 

а 

 

б 

Рис. 3. Порошковый материал на основе металлического кобальта: а – микроструктурный анализ;  

б – рентгенограмма 

Fig. 3. Powder material based on metallic cobalt: a – microstructural analysis; b – X-ray 
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Микроскопический анализ морфоло-
гии частиц показал, что порошковый ма-
териал, полученный методом электроэро-
зионного диспергирования отходов ко-
бальта марки К1Ау, представлен преиму-
щественно частицами сферической и эл-
липсоидной формы, а также их агломера-
тами. 

Результаты рентгеноспектрального 
микроанализа, выполненные в разных зо-
нах исследуемого образца, подтверждают 
присутствие исключительно металличе-
ского кобальта. Отсутствие посторонних 
элементов свидетельствует о высокой чи-
стоте материала и подтверждает, что в 

условиях обработки в углеродсодержащей 
среде (авиационном керосине ТС-1) не 
происходит избыточного насыщения по-
рошка углеродом. 

Данные рентгеноструктурного ана-
лиза (рис. 4, табл. 1) показывают, что в об-
разце фиксируется только кристалличе-
ская фаза кобальта, без образования кар-
бидных или иных соединений. Экспери-
ментальные результаты подтверждают, 
что порошок, полученный методом ЭЭД в 
керосине, представляет собой чистый ко-
бальт без следов взаимодействия с углеро-
дом [20].
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Рис. 4. Результаты рентгенодифракционного исследования образца порошка металлического кобальта 

Fig. 4. Results of an X-ray diffraction study of a sample of metallic cobalt powder 

Таблица 1. Характеристика фазового состояния образца порошка металлического кобальта 

Table 1. Characteristics of the phase state of a sample of metallic cobalt powder 

Параметр 
Наименование фазы 
Cobalt - $-alpha (Co) 

Тип кристаллической ре-
шетки 

225:Fm-3m кубическая кристаллическая решётка 
 

Параметры кристаллической 
решетки, Å 

a = b = c = 3.545673 Å 

 
Данные, характеризующие распреде-

ление частиц по размерам в полученном 
кобальтовом порошке, представлены на 

рисунке 5 и сведены в таблицу 2.
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Рис. 5. Анализ распределения частиц кобальтового порошка по размерам: 1 – график гистограммного 

распределения; 2 – кривая интегрального распределения. 

Fig. 5. Analysis of the distribution of cobalt powder particles by size: 1 – histogram distribution graph;  

 2 – integral distribution curve. 

Таблица 2. Размерная структура частиц порошкового материала 

Table 2. The particle size structure of the powder material 

Параметр Значение 
D5, мкм 0,9 

D10, мкм 1,87 
D25, мкм 5,54 
D50, мкм 12,06 
D75, мкм 20,93 
D90, мкм 32,95 
D95, мкм 42,6 
D99, мкм 63,77 

Объемный средний диаметр, мкм 15,3 
Модальный диаметр, мкм 16,24 

Размах (d90-d10)/d50 2,57 
Удельная поверхность, см²/см³ 16485 

 

Проведённый гранулометрический 
анализ показал, что фракционный состав 
исследуемого порошка охватывает диапа-
зон от наиболее мелких частиц порядка 

0,9 мкм до относительно крупных включе-
ний, достигающих 63,77 мкм. Ключевой 
статистический показатель – медианный 
диаметр D50 – установлен на уровне  
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12,06 мкм. Это указывает на то, что по 
меньшей мере половина совокупного объ-
ёма порошка сформирована частицами, 
чьи размеры не превышают данное значе-
ние. Следовательно, указанный параметр 
одновременно характеризует и средний 
объёмный размер частиц исследуемого 
кобальтового порошка. 

Выводы 

1. Проведённый комплекс исследова-
ний, охватывающий анализ фазового со-
става, морфологии и ключевых физико-
технических параметров мелкодисперс-
ного кобальтового порошка, синтезиро-
ванного посредством электроэрозионного 
диспергирования металлического сырья, 
продемонстрировал высокую результа-
тивность и стабильность данного способа 
получения порошковых материалов. По-
лученные данные подтверждают, что тех-
нология ЭЭД обеспечивает формирование 
порошков с требуемыми эксплуатацион-
ными характеристиками, что делает их 

перспективными для последующего ис-
пользования в различных отраслях про-
мышленности. 

2. Установлено, что порошок характе-
ризуется частицами преимущественно 
правильной сферической и эллиптической 
формы, а также их агломератами. В мате-
риале отсутствует избыточное содержа-
ние углерода. Фазовый анализ выявил 
присутствие единственной фазы – метал-
лического кобальта, без образования со-
единений с углеродом. Размеры частиц из-
меняются в диапазоне 0,9…63,77 мкм, а 
средний объемный диаметр составляет 
12,06 мкм. 

3. Полученные экспериментальные 
данные создают основу для последую-
щего внедрения современных материалов 
и технологических процессов. Примене-
ние электроэрозионного диспергирования 
как экологически чистого, ресурсоэффек-
тивного и безотходного метода позволит 
перерабатывать кобальтовое сырьё в но-
вые высококачественные порошковые ма-
териалы. 
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Рентгенофлуоресцентный анализ элементного состава 

металлоотходов титана 

А.C. Великанов1 

1 Юго-Западный государственный университет 

  ул. 50 лет Октября, д. 94, г. Курск 305040, Российская Федерация 

 e-mail: velikanov_alexander@mail.ru 

Резюме 

Целью данной работы являлось проведение рентгенофлуоресцентного анализа элементного состава 

отобранного металлоотхода и определение маркировки сплава, преимущественно состоящего из титана, 

планируемого к переработке методом электроэрозионного диспергирования для получения порошка, при-

менимого в аддитивных технологиях. 

Методы. Для установления элементного состава титансодержащего сплава неизвестной марки был ото-

бран образец в виде металлической пластины длиной 530 мм, шириной 144 мм и толщиной 4 мм. Анализ 

выполнялся с использованием портативного рентгенофлуоресцентного спектрометра Niton XL3t. Перед 

измерениями поверхность образца была очищена, а каждая точка анализировалась не менее трёх раз для 

повышения достоверности. Метод рентгенофлуоресцентного анализа обеспечивает оперативное и не-

разрушающее определение элементного состава сложных материалов без применения эталонных образ-

цов, позволяя проводить локальный точечный анализ с высокой точностью и скоростью (до 10 с), что осо-

бенно важно при исследовании потенциально неоднородных объектов. 

Конструктивные особенности прибора Niton XL3t обеспечивают возможность проведения локализованного 

точечного анализа поверхности исследуемых объектов, что имеет принципиальное значение при работе 

с материалами, потенциально характеризующимися структурной или химической неоднородностью. Для 

определения соответствия фактического химического состава нормативным требованиям, указанным в 

марочнике сталей и ГОСТ 19807–91, проведено сопоставление экспериментально определённых концен-

траций элементов с теоретическим составом сплава. 

Результаты. Проведённый рентгенофлуоресцентный анализ элементного состава титансодержащих 

металлоотходов с использованием портативного спектрометра Niton XL3t позволил достоверно устано-

вить, что исследуемый образец соответствует марке сплава ВТ1-2. 

Заключение. Полученные результаты формируют научно-методическую основу для последующих иссле-

дований по переработке данных металлоотходов методом электроэрозионного диспергирования с целью 

получения сферических порошков, применимых в аддитивных технологиях. 
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X-ray fluorescence analysis of the elemental composition  

of Titanium metal waste  

Aleksandr S. Velikanov1 

1 Southwest State University 
  50 Let Oktyabrya Str. 94, Kursk 305040, Russian Federation 

 e-mail: velikanov_alexander@mail.ru 

Abstract 

The purpose of this work was to conduct X-ray fluorescence analysis of the elemental composition of a sample of 

metal waste and determine the alloy grade, primarily titanium, planned for processing by electrical discharge dispersion 

to produce powder suitable for additive manufacturing. 

Methods. To determine the elemental composition of a titanium-containing alloy of unknown grade, a metal plate sam-

ple measuring 530 mm in length, 144 mm in width, and 4 mm in thickness was collected. Analysis was performed using 

a Niton XL3t portable X-ray fluorescence spectrometer. Before measurements, the sample surface was cleaned, and 

each point was analyzed at least three times to enhance reliability. X-ray fluorescence analysis provides rapid and non-

destructive determination of the elemental composition of complex materials without the use of reference samples, 

enabling localized spot analysis with high accuracy and speed (up to 10 seconds), which is especially important when 

studying potentially heterogeneous objects. 

The design features of the Niton XL3t instrument enable localized spot analysis of the surface of the test objects, which 

is crucial when working with materials potentially characterized by structural or chemical heterogeneity. To determine 

whether the actual chemical composition complies with the regulatory requirements specified in the steel grade list and 

GOST 19807–91, a comparison was made between the experimentally determined concentrations of elements and the 

theoretical composition of the alloy. 

Results. X-ray fluorescence analysis of the elemental composition of titanium-containing metal waste using a Niton 

XL3t portable spectrometer reliably established that the sample corresponds to the VT1-2 alloy grade. 

Conclusion. The obtained results form the scientific and methodological basis for subsequent research on the pro-

cessing of these metal wastes using electrical discharge dispersion to produce spherical powders applicable in additive 

manufacturing. 

Keywords: titanium; waste; X-ray fluorescence analysis; elemental analysis. 
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*** 

Введение 

Высокая интенсивность развития тех-
нологии аддитивного производства фор-
мирует комплекс научно-технических за-
дач, решение которых требует своевре-
менной проработки и практической реали-
зации [1].  

В условиях усиления внешних санк-
ционных ограничений одним из приори-
тетных направлений является создание 

отечественных технологических процес-
сов по переработке металлоотходов путем 
выпуска из них малотоннажных партий 
сферических металлических порошков ре-
гламентированных марок и дисперсного 
состава [2]. К числу металлических отхо-
дов, рециклинг которых способствует 
снижению технологической зависимости 
и укреплению импортозамещения Россий-
ской Федерации, относятся отходы тита-
новых сплавов [3]. Их востребованность 
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определяется совокупностью эксплуата-
ционных характеристик, обеспечиваемых 
использованием дорогостоящих легирую-
щих элементов [4]. Титановые сплавы за-
нимают ключевые позиции среди матери-
алов, применяемых в аддитивных техно-
логиях [5], и широко используются в ма-
шиностроении, авиационно-космической 
отрасли, энергетике и других высокотех-
нологичных сферах [6–8]. 

Электроэрозионное диспергирование 
(ЭЭД) титансодержащих металлоотходов 
с последующим применением получен-
ных порошков вызывает значительный 
научный и практический интерес [9]. Ме-
тод ЭЭД, несмотря на отсутствие про-
мышленного внедрения, обладает рядом 
существенных преимуществ. Получаемый 
порошок обладает высокой дисперсно-
стью. Переработку металлотходов можно 
производить малыми партиями с низким 
потреблением электроэнергии, при этом 
сохраняя высокий показатель экологично-
сти процесса [10]. 

Однако свойства целевого порошко-
вого материала и, соответственно, каче-

ство восстановленного сплава в значи-
тельной степени зависят от структурного 
и элементарного состава исходных отхо-
дов, которые на сегодняшний день могут 
быть получены методом рентгенофлуо-
ресцентного анализа образцов [11]. 

Целью данного исследования явля-
лось проведение рентгенофлуоресцент-
ного анализа элементного состава ото-
бранного металлоотхода и определения 
маркировки сплава, преимущественно со-
стоящего из титана, планируемого к пере-
работке методом электроэрозионного дис-
пергирования для получения порошка, 
применимого в аддитивных технологиях. 

Материалы и методы 

Для установления элементарного хи-
мического состава сплава неизвестной 
марки, преимущественно состоящего из 
титана, на предприятии, специализирую-
щемся на сборе и рециклинге металличе-
ского лома, был отобран образец металли-
ческой пластины длиной 530 мм, шириной 
144 мм и толщиной 4 мм (рис. 1).  

   

Рис. 1. Образец титановой пластины 

Fig. 1. Sample of titanium plate 

Определение фактического химиче-
ского состава металлоотходов выполня-
лось с использованием портативного 
рентгенофлуоресцентного спектрометра 
Niton XL3t (рис. 2, а, б) [12; 13]. Перед 
проведением измерений поверхность ти- 

танового образца была предварительно 
очищена для исключения влияния следов 
поверхностных загрязнений. Для повыше-
ния достоверности результатов каждая 
точка анализировалась не менее трёх раз 
[14]. 
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                                                            а                                                                б 

Рис. 2. Процесс измерения образца: а – используемая модель спектрометра Niton XL3t;  
б – отображаемые показатели элементарного состава 

Fig. 2. Sample measurement process: a – Niton XL3t spectrometer model used; б – elemental 
 composition readings displayed 

Применение портативного рентгено-
флуоресцентного анализа обосновано его 
высокой точностью, скоростью и произво-
дительностью [15]. Идентификация ме-
таллов и сплавов осуществляется в корот-
ком временном диапазоне (до 10 с), при 
этом исследуемые образцы сохраняют 
свои физико-химические характеристики, 
а метод не предполагает использование 
внешних эталонных образцов [16].  

Рентгенофлуоресцентный метод ос-
нован на регистрации спектра вторичного 
излучения, возникающего при воздей- 

ствии на материал рентгеновского излуче- 
ния высокой интенсивности. Конструк-
тивные параметры прибора обеспечивают 
выполнение локального точечного ана-
лиза поверхности исследуемых объектов, 
что особенно важно при изучении потен-
циально неоднородных материалов [17; 
18]. 

Результаты и их обсуждение 

Данные об элементарном составе об-
разцов исследуемой титановой пластины 
представлены в таблице 1. 

Таблица 1. Результаты исследования образцов металлоотходов 

Table 1. Results of the study of metal waste samples 

Химический элемент 
A chemical element 

Процентное содержание, % 
Percentage content, % 

Погрешность измерения, ±2δ 
Measurement error, 2δ 

Ti 98,95 0,26 
Fe 0,658 0,068 
Сu 0,018 0,003 
Zn 0,030 0,010 
Zr 0,003 0,001 
Pb 0,023 0,006 
Прочие 0,32 – 
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С помощью марочника сталей, в кото-
рый были введены полученные спектро-
метром данные об химическом составе, 

был произведен поиск материалов, соот-
ветствующих критериям (рис. 3). 

 

а 

 

б 

Рис. 3. Процесс идентификации марки сплава: а – ввод данных о массовой доле химических элементов;  

  б – результаты поиска с отображением наименования материала и его элементного состава 

Fig. 3. The process of identifying the alloy grade: a – entering data on the mass fraction of chemical elements; 

 б – search results displaying the name of the material and its elemental composition 
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в 

Рис. 3. Процесс идентификации марки сплава: в – наименование полученного сплава 

Fig. 3. The process of identifying the alloy grade: в – the name of the resulting alloy 

 

Для оценки соответствия фактиче-
ского химического состава нормативным 
требованиям проведено сопоставление 
экспериментально определённых концен-
траций элементов с теоретическим (регла-
ментированным) составом сплава, пред-
ставленным в марочнике. Было установ-

лено, что исследуемый образец изготов-
лен из титансодержащего сплава марки 
ВТ1-2. Результаты сравнительного ана-
лиза, позволяющие выявить отклонения и 
оценить точность соответствия фактиче-
ского состава установленным стандартам, 
приведены в таблице 2.

Таблица 2. Сравнение химического состава сплава, полученного экспериментально, с теоретически 
рассчитанными значениями 

Table 2. Comparison of the chemical composition of the alloy obtained experimentally with theoretically  
calculated values 

Химический элемент 
A chemical element 

Процентное содержание, % 
Percentage content, % 

исследуемый сплав 
the alloy under study 

сплав ВТ1-2 по ГОСТ 19807-91 
alloy VT1-2 according  

to GOST 19807-91 
Ti 98,95 97,8 – 99,7 
Fe 0,658 до 1,5 
Сu 0,018 до 0,3 
Zn 0,030 до 0,3 
Zr 0,003 до 0,3 
Pb 0,023 до 0,3 
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Окончание табл. 2 

End of Table 2 

Химический элемент 
A chemical element 

Процентное содержание, % 
Percentage content, % 

исследуемого сплава 
the alloy under study 

сплава ВТ1-2 по ГОСТ 19807-91 
alloy VT1-2 according  

to GOST 19807-91 

O – до 0,2 
Si – до 0,1 
C – до 0,07 
N – до 0,04 
H – до 0,01 

Прочие 0,32 0,3 
 

Сравнительный анализ массового со-
держания химических элементов в иссле-
дуемом металлоотходе относительно нор-
мативного состава титансодержащего 
сплава ВТ1-2 показал наличие незначи-
тельных расхождений. Так, в образце не 
были выявлены элементы O, Si, C, N и H. 
Это может свидетельствовать о том, что 
их концентрации находятся на пределе об-
наружения метода (не превышают 0,1%) 
либо полностью отсутствуют, что объяс-
няет зарегистрированные отклонения от 
нормативного состава [19; 20]. 

Подобные результаты подтверждают 
высокую степень соответствия исследуе-
мого металлоотхода установленным стан-
дартам и позволяют заключить о его при-
годности для последующей переработки. 

Выводы 

Проведённый рентгенофлуоресцент-
ный анализ элементного состава титан- 

содержащих металлоотходов с использо-
ванием портативного спектрометра Niton 
XL3t позволил достоверно установить, 
что исследуемый образец соответствует 
марке сплава ВТ1-2. Полученные резуль-
таты формируют научно-методическую 
основу для последующих исследований 
по переработке данных металлоотходов 
методом электроэрозионного диспергиро-
вания с целью получения сферических по-
рошков, применимых в аддитивных тех-
нологиях. Реализация процессов ренова-
ции титансодержащих отходов способ-
ствует эффективному использованию ре-
сурсов, поддерживает политику импорто-
замещения и укрепляет технологический 
суверенитет Российской Федерации, что 
подчёркивает актуальность и практиче-
скую значимость проведённого исследо-
вания. 
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Размерные особенности и механизмы роста магнетронных 

наноплёнок нитрида тантала при высокочастотном  

реактивном формировании 
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Резюме 

Цель исследования. Наноструктурирование в магнетронных наноплёнках нитрида тантала при высоко-

частотном магнетронном распылении. 

Методы. Высокочастотное магнетронное распыление на кремниевую подложку осуществлялось в зависи-

мости от изменения управляющего параметра времени t = 1800 – 3600 c. Использовалась мишень из тан-

тала, распыляемая при фиксированных T = 140°C, P = 300 Вт, давлении Ar 1,0 Па. Поверхности подложек 

подвергались ионной чистке в течение 120 с током 60 мА. Рост толщины пленок достигался изменением 

управляющего параметра времени t. Наноразмерная характеризация полученных нанопленок нитрида тан-

тала проводилась с помощью методов атомно-силовой микроскопии, цифровой голографической микроско-

пии и рентгенофазового анализа. По результатам статистической обработки АСМ-изображений выпол-

нялся анализ автокорреляционных функций и изменений фрактальных размерностей, определенных по ме-

тоду кубов. 

Результаты. Прецизионно методом ступеньки на АСМ и ЦГМ изображениях измерены толщины и рассчи-

таны скорости роста нанопленок, доказано их линейное увеличение в зависимости от времени t. По данным 

РФА установлено формирование гексагональной hex-Ta2N фазы в тонких слоях и переход к доминированию 

кубической fcc-TaN с ростом толщины. Наблюдались эволюционные процессы морфологии поверхности с 

переходом от изотропной мелкозернистой структуры к выраженной столбчатой, что подтверждено сни-

жением фрактальной размерности и увеличением длин автокорреляционной функции.  

Заключение. В магнетронных нанопленках из нитрида тантала, осажденных высокочастотным методом, 

обнаружен фазовый переход от гексагональной фазы hex-Ta2N в тонких слоях к кубической фазе fcc-TaN, 

начиная с критической толщины. Снижение фрактальной размерности и увеличение длин автокорреляци-

онной функции указывали на эволюцию морфологии поверхности от изотропно мелкозернистой к выра-

женно столбчатой. 

 
Ключевые слова: высокочастотное магнетронное распыление; нитрид тантала; автокорреляционная 

функция; конкурентный рост зерен; фрактальная размерность; шероховатость. 
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Dimensional features and mechanisms of growth  

of magnetron nanofilms of Tantalum nitride during  

high-frequency reactive formation 
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Ivan S. Saprykin1 

1 Southwest State University 

  50 let Oktyabrya Str. 94, Kursk 305040, Russian Federation 

 e-mail: apk3527@mail.ru 

Abstract 

Purpose of research. Nanostructuring in magnetron nanofilms of Tantalum nitride by high-frequency magnetron sput-

tering. 

Methods. High–frequency magnetron sputtering on a silicon substrate was carried out depending on the change in the 

time control parameter t = 1800 - 3600 C. A Tantalum target sprayed at a fixed T = 140°C, P = 300 W, pressure Ar  

1.0 Pa was used. The surfaces of the substrates were ion-cleaned for 120 s with a current of 60 mA. The increase in 

film thickness was achieved by changing the time control parameter t. Nanoscale characterization of the obtained 

tantalum nitride nanofilms was carried out using atomic force microscopy, digital holographic microscopy, and X-ray 

phase analysis. Based on the results of statistical AFM image processing, the analysis of autocorrelation functions and 

changes in fractal dimensions determined by the cube method was performed. 

Results. The nanofilm thicknesses were measured and the growth rates of nanofilms were calculated using the preci-

sion step method on AFM and CGM images, and their linear increase as a function of time t was proved. According to 

the XRD data, the formation of the hexagonal hex-Ta2N phase in thin layers and the transition to the dominance of 

cubic fcc-TaN with increasing thickness have been established. Evolutionary processes of surface morphology were 

observed with the transition from an isotropic fine-grained structure to a pronounced columnar one, which was con-

firmed by a decrease in fractal dimension and an increase in the lengths of the autocorrelation function.  

Conclusion. In magnetron nanofilms of tantalum nitride deposited by the high-frequency method, a phase transition 

from the hexagonal hex-Ta2N phase in thin layers to the cubic fcc-TaN phase, starting from a critical thickness, was 

detected. A decrease in the fractal dimension and an increase in the lengths of the autocorrelation function indicated 

the evolution of the surface morphology from isotropically fine-grained to pronounced columnar. 

Keywords: high-frequency magnetron sputtering; Tantalum nitride; autocorrelation function; competitive grain growth; 

fractal dimension; roughness. 
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Введение 

Нанопленки из нитрида тантала (TaN) 
широко используются в микро- и нано-
электронике в качестве диффузионных ба-
рьеров [1] и тонкопленочных резисторов 
из-за своих высоких показателей химиче-
ской инертности [2], твердости и коррози-
онной стойкости [3].  

Наиболее часто нанопленки TaN син-
тезируются методом высокочастотного 
магнетронного распыления (ВЧ МР) ме-
таллической мишени Ta в смеси газов Ar 
и N2 [4]. При использовании метода МР 
важно учитывать то, что синтезированные 
таким методом магнетронные нанопленки 
(МНП) приобретают множество алло-
тропных кристаллических структур в за-
висимости от стехиометрического со-
става: гексагональную – TaN, Ta2N, Ta5N6, 
гексагональную плотноупакованную – 
Ta2N, тетрагональную – Ta4N5, ортором-
бическую – Ta4N и Ta3N5, объёмно-цен-
трированную кубическую – TaN0.05, гра-
нецентрированную кубическую – TaN [1]. 
Стехиометрия и кристаллическая струк-
тура МНП соединений нитридов  тантала 
сильно зависят от режима МР (постоян-
ный ток  (ПТ) [5] или ВЧ [6]) и ключевых 
параметров: мощности напыления [7], чи-
стоты состава газовой смеси N2/Ar [8], 
температуры подложки [9], давления N2 
[10], парциального давления в камере [6] и 
т. д. Одним из главных достоинств ВЧ МР 
является получение более однородных и 
менее дефектных МНП по сравнению с 
другими традиционными методами фор-
мирования тонких пленок.  

В настоящее время недостаточно ра-
бот, в которых используется ВЧ-режим, 
по исследованию влияния расхода N2, дав-
ления в камере, мощности и времени рас-
пыления на свойства и структуру получа-
емых МНП. В работе [8] установлено, что 
при увеличении содержания N2 в рабочей 
смеси происходил рост удельного сопро-
тивления и твердости в МНП TaN. В ра-
боте [4] было обнаружено, что при увели-
чении мощности напыления отмечалось 
сижение шероховатости за счет уменьше-
ния размера зерен и формирование плот-
ной и регулярной столбчатой структуры, 
что сопровождалось повышением твердо-
сти и износостойкости. При увеличениях 
парциального давления N2, давления в ка-
мере наблюдался рост удельного сопро-
тивления [6]. При этом с увеличением 
мощности распыления удельное сопро-
тивление снижалось, на мощности выше 
250 Вт наблюдалось появление столбча-
тых структур и рост их размеров. 

Механизм конкурентного роста зерен 
competitive grain growth (CGG) предложен 
и детально описан в [11], согласно кото-
рому более крупные кристаллиты вытес-
няют мелкие. В условиях ПТ МР это со-
провождается ростом шероховатости [12], 
изменением ориентации кристаллитов и 
фазовым сдвигом в сторону hex–Ta2N [5]. 
Однако предложенный механизм CGG 
[11] при ВЧ МР оставался все еще недо-
статочно изученным. В частности, не 
определена критическая толщина МНП 
TaN, при которой в условиях ВЧ МР на 
кремниевую подложку Si (100) он доми-
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нирует, отсутствует детальное определе-
ние фазовых и морфологических измене-
ний, связанных с ним. 

Целью настоящего исследования яв-
ляется определение критической тол-
щины перехода к механизму CGG и режи-
мов его проявления, в нанопленках TaN на 
подложке Si (100) при напылении мето-
дом ВЧ МР. Подавляющее число работ по 
МР нанопленок TaN связывают изменение 
морфологии с ростом мощности, которая 
повышает энергию адатомов и их диффу-
зию в формирующемся поверхностном 
слое МНП. В отличие от большинства ра-
бот, где на морфологию МНП изучено 
влияние энергии адатомов, существенно 
зависящей от мощности распыления тан-
таловой мишени, в настоящей работе 
мощность оставалась неизменной. Управ-
ляющим параметром роста толщины 
МНП выступала продолжительность вре-
мени осаждения, т. е. доза адатомов, что и 
позволило изучить ее влияние на включе-
ние механизма CGG [11]. 

Материалы и методы 

В качестве подложек для нанесения 
МНП были использованы подложки раз-

мерами 1015 мм2 из монокристалличе-
ского кремния (100), с окисленной плен-
кой SiO2 толщиной ~1 мкм. Размеры под-
ложек диктовались требованиями исполь-
зуемого при исследованиях аналитиче-
ского оборудования: атомно-силовой мик-
роскопии (АСМ) и рентгенофазового  
анализа (РФА). Предварительно перед 
процессом ВЧ МР поверхности подложек 
обрабатывались в хромовой смеси 
(H2SO4 + K2Cr2O4). Нанесение МНП осу-
ществлялось на малогабаритной вакуум-
ной установке MVU TM MAGNA-T (про- 

изводитель АО «НИИТМ», г. Зеленоград) 
типовым магнетроном с частотой  
13,56 МГц. Формирование всех образцов 
МНП производилось при следующих па-
раметрах: давление в рабочей камере – 

510-4 Па, ионная чистка поверхности под-
ложки – 120 с, давление атмосферы реак-
тивного газа N2 – 1,0 Па, расход рабочего 
газа – 0,3 л/час, инфракрасный нагрев 
(ИК-нагрев) – до 400 K. Мощность ВЧ МР 
оставалась неизменной – 300 Вт. Управля-
ющим параметром ВЧ МР выступало 
время распыления tМР: 1800, 2700 и 3600 с. 

Для характеризации МНП использо-
вались методы: АСМ (AistNT SmartSPM с 
пространственным разрешением по Z-ко-
ординате 30 пм); РФА (GBC EMMA, 

60 кВ, 80 мА, Cu К, 2 от 20 до 60 с ша-

гом 0,02); цифровой голографический 
микроскоп (ЦГМ) (Lyncee Tec R2203 с 
разрешением по z-координате 30 пм). Тол-
щина формируемых МНП измерялась ме-
тодом «ступеньки» с помощью АСМ и 
ЦГМ. 

Результаты и их обсуждение 

С помощью АСМ в бесконтактном 
режиме и на ЦГМ по методу «ступеньки» 
[13] измерены толщины МНП из TaN на 
подложку из Si (100), которые проиллю-
стрированы рисунком 1 с соответствую-
щими вставками. Представлены АСМ-
изображения всех поверхностей МНП из 

TaN в области 55 мкм2, содержащие спе-
циально созданные «ступеньки». Здесь же 
на вставках показаны профили ступенек с 
соответствующими им перепадами по вы-
соте как по АСМ-изображениям (Ia, Ib и 
Ic), так и по цифровым голографическим 
изображениям на ЦГМ (IIa, IIb и IIc).  
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Рис. 1. АСМ-изображение «ступеньки» МНП из TaN при IIa, IIb и IIc различных параметрах tМР:  

 a – 1800 c; b – 2700 c; c – 3600 c. На вставках Ia, Ib и Ic, IIa, IIb и IIc приведены результаты  

 измерений перепада высот в «ступеньке» по данным АСМ и ЦГМ 

Fig. 1. AFM image of a "step" of TaN MNPs at IIa, IIb and IIc different tMS parameters: a – 1800 s; b – 2700 s;  
 c – 3600 s. The insets Ia, Ib and Ic; IIa, IIb and IIc show the results of height difference measurements  
 in the "step" according to AFM and DGM data 
 

Результаты прямых измерений с по-
мощью АСМ и ЦГМ толщин МНП (h) до-
статочно хорошо согласовывались как по 
величине, так и по их погрешности опре-
деления (10%) и имели линейную зави-
симость h(tМР), как это следует из рисун- 

ка 2 и из сравнения данных с измерен-
ными толщинами h в таблице 2. Таким об-
разом, расхождение между результатами 
измерений h этими методами незначи-
тельно и позволяет получать сопостави-
мые значения. 

 

Рис. 2. Рост толщины МНП из TaN для tМР = 1800, 2700 и 3600 с по измерениям методом «ступеньки»  

с помощью АСМ и ЦГМ 

Fig. 2. Thickness growth of TaN MNFs for tMS = 1800, 2700 and 3600 s as measured by the “step” method  

 using AFM and DGM 

Линейная зависимость от h(tМР) поз-
волила рассчитать скорость роста МНП 

VTaN = h/tМР при ВЧ МР. Величины VTaN по 
измерениям АСМ и ЦГМ были близкими 
и составили ≈0,07 нм/с (рис. 2). Следует 

отметить, что скорость формирования 
МНП из TaN в режиме ПТ МР [13] в реак-
тивной азотной среде оказалась в 14 раз 
выше, достигая VTaN ≈ 1 нм/с.  
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На рисунке 3 приведены РФА ди-
фрактограмм исследуемых МНП, сфор- 
мированных в течение отмеченных  
tМР = 1800, 2700, 3600 с. Измерения РФА 
по составу формируемых МНП TaN были 
выполнены с учетом полученных ранее 
нами данных при ПТ МР [13] в диапазоне 
2θ = 30 – 65С. Обнаруженные изменения 
фазового состава были идентифициро-
ваны с использованием программного 
обеспечения Match!3. Наблюдаемая отно-
сительная интенсивность регистрируемых 

рефлексов во всех случаях существенно 
превышала фон и занимала диапазон от 
десятков до сотен единиц, т. е. была 
вполне достаточной для установления 
текстурированности МНП. На дифракто-
граммах (рис. 3) при соответствующих tМР 

были измерены как изменения интенсив-
ностей всех рефлексов (I1800, I2700 и I3600) и 
их ширины по уровню 0,5 от максимума 
(FWHM – 1/2), так и возникновение но-
вых фаз.

 

Рис. 3. Дифрактограммы МНП из TaN с толщинами: Ia – 130, Ib – 180, Ic – 260 нм, осажденные ВЧ МР  

в реактивной среде смеси Ar + N2 (в центре схематично показаны изменения площадей  

и фазовых составов кристаллитных структур МНП) 

Fig. 3. Х-rays patterns of TaN MNPs with thicknesses: Ia – 130, Ib – 180, Ic – 260 nm deposited by RF MR  

 in a reactive Ar + N2 mixture (the center schematically shows changes of the areas and phase 

 compositions of the MNP crystallite structures) 

К примеру, пик hex-Ta2N (100) при  
2θ = 33,46 (JCPDS No. 26-0985) [5] прояв-
ляется на пленках толщиной 130 нм  
(tМР = 1800 с), 180 нм (tМР = 2700 с) и  
260 нм (tМР = 3600 с) со следующими ин-
тенсивностями (о.е.): I1800 = 64, I2700 = 85 и 
I3600 = 64. Уменьшение 1/2 от 0,26 до  
0,14 в нанопленках при tМР = 2700 с и  
tМР = 3600 с указывало на увеличение рас- 

четных средних размеров кристаллитов и 
соответствовало областям когерентности 
в по формуле Дебая – Шеррера – Селякова  

L = kλ/(1/2cosθ),            (1) 

с L2700 = 36 нм до L3600 = 59 нм, согласовы-
ваясь с данными [2]. Здесь (и далее) форм-
фактор k = 0,9; λ = 0,15406 нм – длина 
волны X-ray для катода из Cu на линии К; 
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1/2 – FWHM (рад) для основной линии 
гексагональной плоскости hex-Ta2N  
на θ(100) = 33,46. Интенсивность данно- 
tМР = 2700 с, тогда как при tМР = 3600 с 
снижалась, свидетельствуя о структурном 
переходе от доминирования hex-Ta2N 
фазы в тонких слоях к кубической фазе 
fcc-TaN в МНП с ростом их толщины. Та-
кая эволюция отвечала механизму CGG 
[11]. На начальной стадии формирования 
МНП энергетически был выгоден рост 
структур с hex-Ta2N фазой. Однако со-
гласно вставке, приведенной на ри-
сунке 3, Ib, начиная с толщины h ~ 180 нм 
доминировала наиболее стабильная куби-
ческая фаза fcc-TaN. Наблюдаемые рас-
ходы рабочего Ar и реактивного N2 в 
смеси газов в процессе ВЧ МР оказались 
связанными с ростом интенсивности фазы 
fcc-TaN. Наблюдаемая эволюция фазового 
состава МНП отражена на вставке к ри-
сунку 3 в виде соответствующих данным 
РФА площадей кристаллитов с размерами 
и числом, которая согласовывалась с вы-
водами [5]. 

Перестройка фазового состава МНП с 
ростом толщины МНП заметна по измене-
ниям линий fcc-TaN (111) с самыми высо-
кими интенсивностями (300, 282 и 
390 о.е.) при 2θ = 35,37° (JCPDS 49-1283) 
[5] и сохранением 1/2 = 0,44. Структуре 
fcc-TaN (111), видимо, отвечала наимень-
шая поверхностная энергия. По мере 
наблюдаемого (см. рис. 2) увеличения 
толщины h(t) в условиях ВЧ МР это вызы-
вало доминирующий рост зерен со столб-
чатой структурой за счет механизма CGG 
[11]. Некоторое снижение интенсивности 
линий fcc-TaN (111) в интервале толщин h 
от 130 до 180 нм обусловлено конкурен-
цией вкладов гексагональной фазы  
hex-Ta2N и fcc-TaN на ранних стадиях ро-
ста, как это показано в [12]. Начиная с 
h = 180 нм (при tМР = 2700 с) отмечена ста-
билизация кубической фазы fcc-TaN [9]  
и значительный рост кристаллитов [14] 

(см. рис. 3, вставка Ic). Неизменность ши-
рины 1/2 = 0,44 в соответствии с (1) да-
вала близкие средние диаметры кристал-
литов (L ≈ 16–18 нм) и подтверждала пре-
имущественный рост столбчатых струк-
тур по аналоги и со структурированием 
МНП в HfN [15]. 

Возникновение фазы hex-Ta2N (101) 
при 2θ = 38,2° (JCPDS 26-0985) [5] и уве-
личение ее интенсивности (15, 12 и 37 
о.е.), видимо, обусловлено ростом тол-
щины МНП до 260 нм. При толщине МНП 
h = 260 нм (см. рис. 3, вставка Ic) кристал-
литы (101) укрупняются. В то же время 
фаза hex-Ta2N (100), начиная с толщины 
h = 180 нм (см. рис. 3, вставка Ib), ча-
стично, а затем полностью аморфизирова-
лась. В начальной стадии роста МНП (при 
130 нм) фаза hex-Ta2N (100) формирова-
лась в условиях интенсивного зарождения 
мелких зерен. На вставках в центре ри-
сунка 3 представлена возможная эволю-
ция структуры от мелкозернистой со сме-
шанной ориентацией плоскостей  
(hex-Ta2N (100) и hex-Ta2N (101)) в интер-
вале h от 130 до 180 нм к формированию 
доминирующих столбчатых кристаллитов 
с преобладанием структур fcc-TaN (111)  
и hex-TaN (111) с частичным дополнением 
hex-Ta2N (101) и hex-Ta2N (102) на  
h = 260 нм. Механизм CGG [11] каче-
ственно указывал, что по мере роста h 

МНП в результате укрупнения зерен про-
исходило перераспределение относитель-
ных вкладов мелких, неупорядоченных 
кристаллитов hex-Ta2N (100), тогда как 
кристаллиты hex-Ta2N (101) укрупнялись, 
имея интенсивный и узкий рефлекс (см. 
рис. 3, встаки Ia, Ib, Ic), согласуясь с выво-
дами [7]. Наблюдаемая смена изменения 
фазовых составляющих отражает после-
довательность процессов от начальной 
аморфизации и до развития ориентиро-
ванных столбчатых структур hex-Ta2N 
(101), что согласуется с полученными 
АСМ-изображениями (рис. 4) при всех 
tМР, вплоть до формирования выраженной 
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столбчатой структуры (рис. 4, c) с увели-
ченными в 5 раз латеральными размерами 
по результатам гранулометрического ана-
лиза. Действие механизма CGG [11] и свя-
занных с ним эволюционных перестрое- 

ний кристаллитов с многочисленными фа-
зовыми соединениями [1], формируемыми 
в составе МНП, схематично проиллюстри-
ровано на рисунке 3 вставками IIa, IIb, IIc.

Рис. 4. АСМ-изображения поверхностей МНП из TaN в среде Ar+N2 при tМР: a – 1800 с; b – 2700 с;  

c – 3600 с. На вставках ко всем АСМ-изображениям МНП показаны гранулометрические 

распределения I и профили шероховатости (вдоль отмеченного направления) II 

Fig. 4. AFM images of MNF surfaces from TaN in the Ar+N2 medium at tMS: a – 1800 s; b – 2700 s; c – 3600 s.  

 The inserts to all AFM MNF images show granulometric distributions I and roughness profiles  

 (along the marked direction) 

 

Отмечен рост на всех МНП интенсив-
ности (15, 17 и 30 о.е.) фазы hex-TaN (111) 
при 2θ = 51,7° (JCPDS, record 01-089-5198) 
[3]. По аналогии с фазой hex-Ta2N (101) 

наблюдалось изменение параметра 1/2 с 
гиперболической на параболическую за-
висимость. При толщине пленки 130 нм 
hex-TaN (111) слабо выражена, а ее после-
дующее усиление коррелировало с накоп-
лением азота. Увеличение ширины пика 

FWHM до 1/2 = 0,34 при толщине 180 нм 
с последующим его сужением при тол-
щине h = 260 нм говорило (согласно (1)) 
об укрупнении кристаллитов [5]. Рост ин-
тенсивности рефлекса hex-TaN (111) при 
этой толщине h подтверждал локальное 
перенасыщение атомами N2 [7] за счет 
действия механизма CGG [11]. Появление 
при tМР = 3600 (см. рис. 3, с) рефлекса hex-
Ta2N (102) при 2θ = 51,6° (PDF record  
26-0985) [16], фактически совпадающего с 
линией hex-TaN (111), разделяемого 

только после конволюции, указывало на 
развитие гексагональной Ta2N (102) фазы 
внутри столбчатой структуры пленки [5]. 
Линия hex-Ta2N (110) [17] при 2θ = 61,65° 
(PDF#26-0985) [18] наблюдалась на всех 
исследуемых МНП, характеризовалась ро-
стом интенсивности (26, 52 и 52 о.е.), 
начиная с h = 180 нм МНП обладала уже 

отмеченной зависимостью по 1/2. Ее уши-
рение для толщины h = 260 нм свидетель-
ствовало о дроблении зерен на этой ста-
дии роста МНП [12]. Линия hex-TaN (201) 
при 2θ = 63,81° (JCPDS, record 01-089-
5198) [3] регистрировалась в МНП с пара-
болическим изменением зависимости по 
интенсивности (6, 100 и 62 о.е.). Сужение 

1/2 при увеличении толщины МНП от  
h = 180 нм до h = 260 нм приводило к 
укрупнению кристаллитов, уменьшению 
микронапряжений, определяемых по фор-
муле (2), и переходу от стадии формиро-
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вания из мелких зерен и укрупнения кри-
сталлитов с формированием гексагональ-
ной структуры [7] опять же за счет меха-
низма CGG [11].  

По полученным дифрактограммам 

были рассчитаны микродеформации () в 
исследуемых МНП (табл. 1):  

 = hkl / (4tghkl),                  (2) 

где hkl – 1/2 и hkl –  для рефлексов, 
наблюдаемых на рисунке 3, а hkl – ин-
дексы Миллера соответствующих плоско-
стей в кристаллитных структурах в МНП. 

С учетом интенсивностей наблюдае-
мых рефлексов были рассчитаны коэффи-
циенты текстурирования МНП: 

T = Ihkl/Ii(hkl).                  (3) 

При суммировании Ii(hkl) учтены все 
возникающие рефлексы, а в числителе бе- 

рется Ihkl – интенсивность линии вдоль 
главной оси. Рассчитанные по (3) коэффи-
циенты текстурирования МНП приведены 
в таблице 1.  

По наблюдаемым отклонениям ре-
флексов от эталонных значений a0hkl, взя-
тых из базы данных ICDD, были оценены 
величины и знаки возникающих в МНП 
деформаций. Расчеты межплоскостных 
расстояний ahkl по данным РФА-анализа 
для МНП проведены по формуле Вульфа – 

Брегга: 2asin = . Возникающие относи-
тельные изменения ahkl определялись в 

процентах:  

∆а = ((ahkl – a0hkl)/a0hkl)∙100%.      (4) 

Результаты расчетов ∆а и  МНП 
TaN представлены в таблице 1. 

Таблица 1. Результаты расчетов для кристаллитов fcc-TaN (111) в МНП при tМР 1800 с, 2700 с и 3600 с 

коэффициентов текстурированности (T), микродеформаций (), изменений межплоскостных 

расстояний (∆а) и областей когерентности (Lhkl) 

Table 1. The results for fcc-TaN (111) crystallites in MNP at tMS 1800 s, 2700 s and 3600 s of the texture  

coefficients (T), microdeformations (), changes in interplanar distances (∆а) and coherence regions 
(Lhkl) are calculated 

tМР, с T, о.е. (10-3) о.е. ∆а, % Lhkl, нм 

1800 76,02 0,38 –1∙10–3 20,87 
2700 53,91 0,32 –4∙10–4 24,84 
3600 67,34 0,30 –1∙10–3 26,08 

АСМ-изображения поверхностей 
МНП, полученных при времени напыле-
ния 1800 с, 2700 с и 3600 c площади 
55 мкм2, приведены рисунке 4. Показаны 
морфологии этих пленок, гранулометри-
ческие распределения латеральных разме-
ров (d) – N(d) (вставка I) и линейные вы-
сотные профили вдоль выбранной линии 
(вставка II). Для количественного струк-
турного анализа МНП нитрида тантала  
использовалась программа Digital по  
аналогии с [13], с помощью которой  
были рассчитаны параметры шероховато-
сти Ra (средняя) и Rq (среднеквадратич- 

ная). Зависимость N(d) имела нормальное 
гауссово распределение. На уровне 
FWHM были определены средние лате-
ральные размеры наноструктур daver и ин-
тервалы изменений ± ∆d: d = daver±∆d (см. 
рис. 3, а-с, вставки I): d1800 = (25±7) нм, 
d2700 = (28±10) нм, d3600 = (140±30) нм. Все 
измеренные h, Ra, Rq, daver±∆d приведены в 
таблице 2. На рисунках 4, b и с за преде-
лами указанных интервалов присутство-
вали наноструктуры с малыми размерами 
d, что соответствовало мелким кристалли-
там.
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Таблица 2. Рассчитанные значения h, Ra, Rq, daver±∆d и Dfr 

Table 2. Calculated values of h, Ra, Rq, daver±∆d and Dfr 

tМР, с h, нм Ra, нм Rq, нм2 daver±∆d, нм Dfr 

1800 130 0,92±0,2 1,09±0,2 25±7 2,59 

2700 180 1,14±0,2 1,42±0,2 28±10 2,60 

3600 260 8,48±0,2 9,76±0,2 140±30 2,33 

Обобщенный анализ результатов 
РФА и АСМ показал, что с увеличением 
времени осаждения tМР отмечались как 
укрупнение областей когерентности для 
линии fcc-TaN (111), так и рост их интен-
сивностей, а также латеральных размеров 
d, которые начиная с tМР = 2700 c возрас-
тали более чем в 5 раз. Такое изменение в 
d с учетом вида профилей на АСМ-
изображениях (вставка II) подтверждало 
их вертикальную ориентацию в виде 
столбчатых кристаллитов [5]. Получен-
ные значения T (см. табл. 1) отвечали 
наблюдаемым эволюционным морфоло-
гическим изменениям на поверхности 
МНП. Начиная с tМР = 1800 c поверхность 
МНП приобретала однородную структуру 
(см. рис. 4, а, вставки I, II). Далее при  
tМР = 2700 c структура эволюционировала 
из-за конкуренции фаз и / или ориентаций 

[5], что заметно по изменениям T и ∆а (см. 
табл. 1). При tМР = 3600 c наблюдался до-
минирующий рост столбчатых кристалли-
тов, на что указывали профиль и N(d), а 
также морфология поверхности МНП (см. 
рис. 4, с). Эволюционные перестройки 
морфологии поверхности МНП подтвер-

ждены наблюдаемыми уменьшениями T,  
согласно данным таблицы 1. Их характер 
свидетельствовал о частичной релаксации 
внутренних напряжений при укрупнении 
зерен, а отрицательные значения относи-
тельных изменений межплоскостных рас-

стояний ∆а отражали преобладающие 
сжимающие упругие деформации ре-

шетки при всех tМР [5]. По нашему мне-
нию, абсолютная величина сжатия вре-
менно уменьшалась при tМР = 2700 c 
вследствие перераспределения объёма  
и кратковременной релаксации напряже-
ний в период перестройки зерен. При  
tМР = 3600 c сжатие усилилось, что, по 
нашему мнению, вызвано ограничением 
релаксации со стороны крупных столбча-
тых структур. Совокупность полученных 
закономерностей (рост Lhkl [12], измене-
ния T, ε и ∆a [5]) соответствовала меха-
низму CGG [11]. Часть фазовых областей 
укрупнились и коагулировали в столбча-
тые колонны, тогда как другие уменьша-
лись в объеме и частично релаксировали, 
как это схематично проиллюстрировано 
на рисунке 3 вставками IIa, IIb, IIc. 

Расчет фрактальной размерности для 
каждой МНП из TaN проводился с помо-
щью метода подсчета кубов [19] в про-
грамме Gwyddion v2.64 [13]. Значения 
фрактальных размерностей Dfr были опре-
делены для каждой исследуемой МНП из 
TaN и представлены в таблице 2. Фрак-
тальные размерности Dfr многофазной по-
верхности МНП из аллотропных фаз нит-
рида тантала [1] имели нелинейную зави-
симость Dfr(t). При tМР = 1800 с значение 
Dfr = 2,59 отвечало мелкозернистой струк-
туре, которая развивается по островко-
вому механизму роста Вольмера – Вебера: 
дискретные зерна формируют трёхмерные 
«островки» без образования предвари-
тельного двухмерного равномерного слоя, 
как и для tМР = 2700 с, когда значение  
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Dfr = 2,60 практически не меняется, отра-
жая сохранение микроструктуры на по-
верхности МНП без формирования устой-
чивой столбчатой структуры [7]. Для  
tМР = 3600 с значение Dfr снижается до 
2,33, что свидетельствует о росте столбча-
тых структур [20]. Такое поведение Dfr 
находилось в соответствии с механизмом 
CGG [11].  

Статистическая обработка с построе-
нием фрактальной размерности поверхно-
сти была дополнена двумерным анализом 
[21] и построением автокорреляционных 
функций (АКФ) [22], результаты которого 
показаны на вставках к рисунку 5 с демон-
страцией анализа АСМ-изображений (см. 
рис. 4) на отдельных этапах. По поверхно-
стям МНП при каждом tМР рассчитаны 
двумерные изображения 2D АКФ – С(r) в 

области 55 мкм2 вдоль горизонтальной 
(x) и вертикальной (y) осей (рис. 5, вставки 
Ia-Ic). При обработке АСМ-изображений 
(см. рис. 4) вычиталось среднее, корректи-
ровалась глобальная плоскость (plane fit), 
построчно выравнивалась (line leveling) и 
удалялись одиночные выбросы малошу-
мящей медианной фильтрацией. АКФ по-
лучали по методу Винера – Хинчина, ре-
зультат смещали (fftshift) и нормировали 
на значение в нулевой точке C(0). По  
двумерным картам 2D АКФ (fftshift) опре-
делялись продольные или кольцевые 
структуры по осевым срезам АКФ – C(r)  
(рис. 5, IIa-IIc) вдоль x (горизонтальная 
АКФ) и y (вертикальная АКФ). Радиаль-
ная усреднённая и секторная C(r) давали 
скалярную оценку корреляционной длины 
и вклад отдельных направлений для коли-
чественного определения анизотропии 
(рис. 5, вставки IIIa-IIIc). Радиально ус-
реднённая функция C(r) строилась разби-

ением области на 100 кольцевых бинов  
вокруг центра с радиусом в пикселях  
dx = XSize / Npixels (в наших данных  
dx = 12,5 нм). 

Оценка корреляционных длин ξ вы-
полнялась двумя независимыми мето-
дами:  

1) метод интерполяции по уровню  
1/e давал радиальное расстояние r (нм), на 
котором радиально-усреднённая автокор-
реляция C(r) снижалась до 1/e ≈ 0,37 от 
C(0); 

2) метод экспоненциальной аппрок-
симации из C(r) ≈ A·exp(−r/ξ), где A – ам-
плитуда корреляции при r, стремящемся к 
0, с нормировкой по C(0). Аппроксимация 
выполнялась на интервале r ≤ f·Lscan, где 
Lscan – линейный размер скана, а f = 0,33 – 
граница, исключающая нестабильности. 
Секторные кривые сравнивали между со-
бой и с радиальной C(r) для проверки со-
гласованности. Выбор угла для сектор-
ного усреднения выполнялся как с учетом 
углов с локально максимальной амплиту-
дой секторной АКФ в интервале малых и 
средних r, так и ее устойчивости относи-
тельно небольших изменений ширины 
сектора и шага скана, а также его совпаде-
ния с видимыми продольными структу-
рами на 2D АКФ и с особенностями  
осевых срезов и радиальной C(r). По  
этим критериям для МНП (см. рис. 4) при  
tМР = 1800 с и tМР = 2700 с угол составил 
315°. Для tМР = 3600 с был выбран угол 
110°. Результаты проведенных вычисле-
ний представлены на рисунке 5: двумер-
ная АКФ – на вставках Ia-Ic, осевые срезы 
АКФ по центру по осям X и Y – на встав-
ках IIa-IIc, а также радиальная и секторная 
АКФ C(r) с отмеченными аппроксимаци-
ями 1/e и Exp.
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Рис. 5. Графики АКФ вдоль горизонтальной и вертикальной осей для МНП из TaN при tМР:  

a – 1800 с; b – 2700 с; c – 3600 с. На вставках показаны: Ia-Ic – 2D АКФ; IIa-IIc – горизонтальная  

и вертикальная АКФ на осевых срезах от центра; IIIa-IIIc – радиальная и секторная АКФ –C(r) 

Fig. 5. Autocorrelation function graphs plotted along the horizontal and vertical axes for TaN MNPs deposited 

at tMR: a – 1800 s; b – 2700 s; c – 3600 s. The insets for all MNPs show: Ia-Ic – 2D ACF; IIa-IIc – 

horizontal and vertical ACF on axial slices from the center; IIIa-IIIc – radial and sector ACF – C(r) 
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При tМР = 1800 с наблюдалась моно-
тонно убывающая C(r) без выраженных 
осцилляций. По осевым срезам АКФ C(r) 
значения ξh (1/e) = (34,19±0,98) нм и  
ξv (1/e) = (40,96±0,82) нм, т. е. были близ-
кими, отвечая мелкозернистой структуре 
без регулярного шага зерен [22]. Сектор-
ная АКФ имела слабый локальный пик на 
расстоянии ~1 мкм, который не прояв-
лялся в радиальной АКФ и без осцилля-
ций в осевых срезах. Вероятнее всего, он  
возникал из-за локальной направленной 
флуктуации. С ростом tМР преобладала 
вертикальная корреляционная длина (ср. 
ξh (1/e) = (30,80±2,54) нм и ξv (1/e) =  
= (44,94±0,76 нм) по сравнению с горизон-
тальной осью, что свидетельствовало о 
начале структурной перестройки. При  
tМР = 3600 с отмечен рост ξh (1/e) =  
= (76,11±4,82) нм и ξv (1/e) = (134,85±2,31) нм 
с выраженной анизотропией (ξv >> ξh). 
Возникали осцилляции C(r) порядка  
1,5–2 мкм, что подтверждено и осевыми 
срезами АКФ (см. рис. 5, вставка IIc).  Все 
это соответствовало росту столбчатой 
морфологии [5] в соответствии с механиз-
мом CGG [11]. 

Выводы 

Проведённым комплексным анали-
зом МНП TaN, полученных методом ВЧ 
МР при tМР = 1800 с, 2700 с и 3600 с, пре-
цизионно методом «ступеньки» и изме-
ренные толщины составили 130, 180 и  
260 нм, формируемые со средней скоро-
стью роста ~0,07 нм/с. 

РФА-анализ позволил установить из-
менения в аллотропных фазах: рост доли 

hex-Ta2N (100) на ранних стадиях роста и 
стабилизацию кубической фазы fcc-TaN 
(111) при толщине 260 нм, интенсивность 
рефлексов hex-Ta2N (100) и hex-Ta2N (101) 
подчиняется параболической зависимо-
сти, тогда как интенсивность fcc-TaN 
(111) постоянно растёт, согласуясь с меха-
низмом CGG [11], сопровождаясь форми-
рованием столбчатой структуры. Отме-
чено устойчивое отрицательное смещение 
межплоскостного расстояния ∆a в fcc-TaN 
(111), т. е. сжатие решётки при росте; вре-
менное уменьшение абсолютной вели-
чины ∆a при tМР = 2700 с ответственно за 
частичную релаксацию напряжений и пе-
рераспределение ориентаций, тогда как 
сжатие при tМР = 3600 с вызвано остаточ-
ными напряжениями в столбчатых струк-
турах.  

Гранулометрическое распределение в 
АСМ-изображениях характеризовалось 
увеличением среднего размера зерен с ро-
стом толщины МНП, тогда как их фрак-
тальная размерность Dfr уменьшается. 
Двумерный автокорреляционный анализ 
выявил рост корреляционных длин ξh (от 
~30,8 до ~76,11 мкм) и ξv (от ~ 40,96 до 
~134,85 мкм) с возникновением осцилля-
ций АКФ C(r) при tМР = 3600 с, что под-
тверждало формирование упорядоченных 
столбчатых структур, в соответствии с ме-
ханизмом конкурентного роста зерен 
competitive grain growth (CGG). 

Изученное c ростом толщины  эволю-
ционное развитие поверхностной струк-
туры МНП TaN и их фазового состава пер-
спективно для практического применения 
в микроэлектронике и машиностроении. 
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Генерация продольных акустических волн возбужденной 

акустической подсистемой при движении доменной границы  
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Резюме 

Целью настоящей работы является определение прямого вклада магнитных волновых колебаний намаг-

ниченности в движении доменной границы в генерацию продольных акустических волн и их обратного вли-

яния на процессы перемагничивания в ортоферрите иттрия. 

Методы. Объектом исследования в работе является решение системы динамических уравнений, описыва-

ющих взаимодействие магнитной и акустических подсистем, возбуждаемых движущейся доменной грани-

цей в ортоферрите иттрия. Уравнения решаются методами теории возмущений, медленно меняющихся 

амплитуд и Лагранжа. 

Результаты. Впервые получено явное решение смещения продольной акустической волны, генерируемой 

магнитной подсистемой, сопровождающей движущуюся доменную границу в ортоферрите иттрия с уче-

том обратного влияния акустической волны. С использованием известных значений параметров, входящих 

в систему динамических уравнений, описывающих взаимодействия при движении доменной границы в орто-

феррите иттрия продольной акустической волны и магнитной подсистемы, выполнены численные рас-

четы на основании полученного решения. Показано, что максимальный вклад на движущуюся доменную гра-

ницу в ортоферрите иттрия из-за обратного влияния продольной акустические волны достигает порядка 

10–12 м вдали от волновой скорости и увеличивается в 104 раз (до порядка 10–8 м) при скорости доменной 

границы, близкой к волновой скорости, т.е. становится сопоставимым с ее теоретической толщиной по 

Ландау ≈10-8 м. 

Заключение. Получено явное решение, учитывающее взаимное влияние на механизмы взаимодействия маг-

нитной и акустических подсистем квазичастичных возбуждений, сопровождающих околозвуковые движения 

доменной границы в ортоферрите иттрия, позволяющее учесть современные требования к запоминаю-

щим и логическим устройствам по качеству и скорости обработки информации. Получены практически 

значимые оценки вкладов взаимодействий для совершенствования элементной базы таких устройств. 

Ключевые слова: доменная граница; акустические волны;  магнитная подсистема; волновые колебания; 

намагниченность; ортоферрит иттрия. 
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Abstract 

The purpose of this study is to determine the direct contribution of magnetic wave oscillations of magnetization during 

domain wall motion to the generation of longitudinal acoustic waves and their feedback effect on magnetization reversal 

processes in yttrium orthoferrite. 

Methods. The object of this study is the solution of a system of dynamic equations describing the interaction of mag-

netic and acoustic subsystems excited by a moving domain wall in yttrium orthoferrite. The equations are solved using 

perturbation theory, slowly varying amplitude theory, and Lagrangian methods. 

Results. For the first time, an explicit solution was obtained for the displacement of a longitudinal acoustic wave gen-

erated by a magnetic subsystem accompanying a moving domain wall in yttrium orthoferrite, taking into account the 

feedback effect of the acoustic wave. Using known values of the parameters included in the system of dynamic equa-

tions describing the interactions between the longitudinal acoustic wave and the magnetic subsystem during domain 

wall motion in yttrium orthoferrite, numerical calculations were performed based on the obtained solution. It is shown that the 

maximum contribution to a moving domain wall in yttrium orthoferrite due to the feedback effect of a longitudinal acoustic 

wave reaches about 10-12 m far from the wave velocity and increases by a factor of 104 (to about 10-8 m) at a domain wall 

velocity close to the wave velocity, i.e., it becomes comparable to its theoretical Landau thickness of ≈ 10-8 m. 

Conclusion. An explicit solution is obtained that takes into account the mutual influence of quasiparticle excitations 

accompanying transonic domain wall motion in yttrium orthoferrite on the interaction mechanisms of the magnetic and 

acoustic subsystems. This solution allows for meeting modern requirements for memory and logic devices in terms of 

quality and speed of information processing. Practically significant estimates of the contributions of such interactions 

are obtained for improving the component base of such devices. 
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Введение 

Актуальной задачей дальнейшего 
развития важного научного направления в 
области информационных технологий яв-
ляется повышение скорости обработки 
информации. Для записи информации в 
настоящее время применяют магнитные 
материалы с локально задаваемой ориен-
тацией намагниченности [1]. Существует 
ряд материалов (со слабоферромагнитным 
упорядочением – СФМ) с особенностью 
перемагничивания, основанном преиму-
щественно на движении доменных границ 
(ДГ) [2], одним из которых является орто-
феррит иттрия YFeO3. Он обладает боль-
шими полями обменного взаимодействия, 
анизотропии, малыми полями размагни-
чивания и коэрцитивности, а также уни-
кальным сочетанием магнитооптических 
свойств [3]. Совокупность таких свойств 
YFeO3 предопределила аномально высо-
кую скорость движения ДГ вплоть до 
2104 м/с, что в несколько раз выше харак-
терных скоростей поперечного и даже 
продольного звука. Ударно-волновые вза-
имодействия в момент преодоления ДГ 
звуковых барьеров сопровождаются воз-
никновением явления упругоиндуциро-
ванного перемагничивания с быстродей-
ствием до 70 фс, что было положено в ос-
нову создания акустооптических уст-
ройств (патент РФ № 2266552). Большие 
перспективы дальнейшего изучения про-
цессов перемагничивания в YFeO3 свя-
заны с открытием в них метастабильных 
гексагональных модификаций h-RFeO3, 
объединяемых в многослойные триго-
нальные пирамиды [5]. Указанные свой-
ства ортоферритов востребованы при со-
здании устройств спинтроники [6]. При-
менение новых методов [6], разработка 
новых методик исследования процессов 
перемагничивания [7] будет способство-
вать созданию быстродействующих 
устройств обработки информации. 

Взаимодействие магнитных (спино-
вых) и упругих (акустических) подсистем 
при движении ДГ в ортоферритах си-
стемно заложено в работах Е.А. Турова  
и В.Г. Шаврова [8]. Дальнейшие исследо-
вания магнитоакустических эффектов  
продолжены в работе А.К. Звездина и  
А.А. Мухина [9], где описаны магнито-
упругие уединенные волны, вызванные 
сверхзвуковой динамикой ДГ. Магнито-
упругие волны [10] и колебания ДГ в вы-
сокочастотных полях [11], дополненные 
расчетами торможений ДГ в YFeO3 [12] и 
распространения в самой ДГ [13] спино-
вых волн [14], позволили получить оценки 
амплитуды акустических смещений при 
скоростях движения ДГ, близких к звуко-
вым [15]. Исследование взаимодействия 
при возрастании магнитоупругой связи, 
вызванного торможением ДГ и магнито-
волновыми колебаниями намагниченно-
сти и акустических волн, было проведено 
в [16]. Механизмы генерации волн Лэмба 
в пластинчатых образцах YFeO3 установ-
лены и описаны в [17]. Расчеты смещения 
продольных акустических волн в движу-
щейся ДГ в пластинах ортоферритов были 
проведены экспериментально в [18]. Тео-
ретические исследования и расчеты взаи-
модействия магнитных и акустических 
подсистем в движущейся в YFeO3 ДГ со 
скоростью, далекой от звуковых скоро-
стей, были выполнены в [19], а в работе 
[20] такие расчеты проводились и для ско-
ростей, близких к звуковым.  

В данной статье исследован вклад 
магнитной подсистемы, возбуждаемой 
движущейся ДГ в YFeO3 с учетом обрат-
ного влияния на нее акустических волн, в 
генерацию продольной акустической 
волны. Получены оценки амплитуды сме-
щения продольной акустической волны 
для скоростей движения ДГ в YFeO3, да-
леких и близких к звуковым скоростям. 
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Материалы и методы 

Для исследования вклада магнитной 
подсистемы, возбуждаемой движущейся 
ДГ с учетом обратного влияния акустиче-
ских волн, в генерацию продольной аку-
стической волны выбран YFeO3. Решение 
системы уравнений,  описывающих взаи-
модействие магнитных волновых колеба-
ний намагниченности и продольных аку-
стических волн, строилось на методе тео-
рии возмущений, медленно меняющихся 
амплитуд и Лагранжа.  

Взаимодействие магнитной и акусти-
ческой подсистем описывается системой 
динамических уравнений [21]: 

� 1с� ����� − ��� �! " + #�2$ sin2" = 

= − δ($  �)(� ∙ sin2" + δ+$  �)+� ∙ cos2" + 

+ ./$ ∙ sin" + α12$ �"��   ;                  (1) 

� 16(�
����� − ��� �! )( = − δ(ρ6(�

�"� ∙ sin2" ; (2) 

� 16+�
����� − ��� �! )+ = − δ+ρ6+�

�"� ∙ cos2", (3) 

где " = "( , �)  – пространственно-вре-
менное задание угла антиферромагнит-
ного вектора или вектора магнитных вол-
новых колебаний намагниченности, изме-
няемое от –/2 до +/2 относительно нор-
мали плоскости ДГ; )( = )( (x, t),  )+ = )+(x,t)  – акустические смещения (от-
носительно оси x, от координаты y пере-
менные не зависят) для продольной и по-
перечной волн. 

Параметры в уравнениях (1)– (3)  
подробно описаны в [22]. По данным [23] 
использовали параметры, входящие в  
систему уравнений (1)–(3): H = 60 Э;  
m = 10-2 г; ρ = 5 ∙ 109 г/м3; с = 2 ∙ 104 м/с;  
st = 4,2 ∙ 103 м/с; 6: = 7∙103 м/с; v = 1,46 ∙ 104 м/с; 
A = 8,8 ∙ 10-1 Э/м3; δt = δ1 = 5 ∙ 1012 эрг/м3;  
D3 = 10-8 м; k =  2 108 m-1; b3 = 1,08 ∙ 1012 Э/м3; 
ωа = 7 ∙ 1011 с-1; ωs = 2,22 ∙ 1012 с-1;  

ωs = 2,92 ∙ 1012 с-1; ks = ka = 108 м1; 
α = 2,92 ∙ 107 v-1; g = 1,76 ∙ 1012 (с∙тл)-1. 

Результаты и их обсуждение 

Уравнение (1) задает угол антиферро-
магнитного вектора. В правой части этого 
уравнения учитывается поглощение излу-
чения магнитной подсистемы, внешнее 
магнитное поле и влияние акустических 
волн. Уравнения (2), (3) задают смещения 
поперечной и продольной акустических 
волн соответственно. В правой части этих 
уравнений учитывается магнитоакустиче-
ское взаимодействие.  

В работе [15] было изучено взаимо-
действие ", )( и ", )+ при условии ./ ≠ 0 , α1 ≠ 0 и 

− δ($  �)(� ∙ sin2" + δ+$  �)+� ∙ cos2" = 0. (4) 

Рассмотрим влияние магнитной под-
системы " на продольную акустическую 
волну   )( при условии ./ ≠ 0 , α1 ≠ 0  
с учетом обратного взаимодействия 
волн  )( , )+ с ": 

  − δ($  �)(� ∙ sin2" + δ+$  �)+� ∙ cos2" ≠ 0. (5) 

Для этого решалась система двух 
уравнений (1)–(2) при условии (5). Как и в 
работе [15], положим, что   " = "< + "� ,                    (6) 

где "< – угол антиферромагнитного век-
тора без возмущений являлся решением 
уравнения 

� 1с� ����� − ��� �! "< + #�2$ ∙ sin 2 "< = 0,  
       "< = −2arctg ABCD+EF  .               (7) 

Второе слагаемое в (6) "�  – угол анти-
ферромагнитного вектора возбуждаемой 
магнитной подсистемы, т. е. при условиях ./ ≠ 0 , α1 ≠ 0 и (5). При этом в (6)  "� << "<,  т. к. правая часть уравнения (1) 
мала. Это позволило свести систему (1) – 
(3) к системе линейных уравнений [15] и 
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уравнения (1)–(2) в этом случае приняли 
вид 

� 1с� ����� − ��� �! "� = 

= δ+$  �)+� ∙ cos  2"< − δ($ �)(� ∙ sin  2"< + 

  + ./$ ∙ sin"< + α12$ �"<�� + α12$ �"���  ;     (8) 

 � 16(�
����� − ��� �! )( = 

 = − δ(ρ6(� H�"<� + �"�� I ∙ sin  2"<  .    (9) 

Из (7) были определены параметры 
уравнений (8), (9) и ДГ [22]: �"<�� = JK�ch M − J�K� N ;   sin2"< = 

= 2sh M − J�K� N
ch� M − J�K� N ; �"<� = −1K�ch M − J�K� N ; 

cos 2"< = 1 − 2ch� M − J�K� N ; 
sin "< = 1ch M − J�K� N ; 
K� = O $#�

(с� − J�)с� ,             (10) 

где K� – параметр ширины ДГ; J − ско-

рость ДГ (J ≤ 2 ∙ 10Q м/с; D3 ≈ 10-8 м).  
Для линейных уравнений (8), (9) для 

удобства решения были представлены в 
виде суммы составляющих: "� = "�(�) + "�(�);   )( = )((<) + )((�)(�) + )((�)(�) ;    )+ = )+(<) + )+(�)(�) + )+(�)(�) .        (11) 

Нулевые слагаемые продольных и по-
перечных волн в (11) есть решения урав-
нений (2), (3) с нулевой правой частью 
[16]: 

)((<) = ARST+CRUTB + ACRST+VRUTB;    )+(<) = ARST+CRUTB + ACRST+VRUTB.   (12) 

Параметры в (12) подчинялись зако-
нам дисперсии для магнитной, акустиче-
ской подсистем и спектральных компо-
нент магнитоакустических напряжений 
ДГ [21]:  

 ωX = O#�с�$ + с�YX�  ,   Y = YX + YZ,   
ωa = sl,tka,   ω = kv,    ω = ωs + ωa.    (13) 

Влияние составляющей  "�(�)
 магнит-

ной подсистемы в (11) при условии  ./ ≠ 0 , α1 ≠ 0 и (4) на продольную аку-
стическую волну было ранее изучено в 
[15]. В этой работе получено явное реше-
ние смещения продольной акустической 

волны )((�)(�)
, генерируемой  "�(�)

, из реше-

ния системы уравнений 

� 1с� ����� − ��� �! "�(�) = ./$ ∙ sin "< + 

+ α12$ �"<�� + α12$ �"�(�)��  ;           (14) 

  � 16(�
����� − ��� �! )((�)(�) = 

= − δ(ρ6(� [�"<� + �"�(�)� \ ∙ sin  2"< .   (15) 

Тогда, с учетом (5) и (11) – (15), в си-
стеме линейных уравнений (8)–(9) остава-
лись неопределенными составляющие ре-

шения (11) "�(�)
и )((�)(�) , которые должны удовлетворять системе уравнений: 

� 1с� ����� − ��� �! "�(�) = 

= − δ($  �)(� ∙ sin 2"< + δ+$  �)+� ∙ cos 2"< ; (16) 

� 16(�
����� − ��� �! )((�)(�) = 

= − δ(ρ6(� [�"�(�)� \ ∙ sin2"<.        (17) 
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Таким образом, система (16), (17) 
определяет смещение продольной акусти-
ческой волны под влиянием магнитной 
подсистемы, возбужденной акустиче-
скими волнами в движущейся ДГ в орто-
феррите иттрия без поглощения и внеш-
него магнитного поля. В уравнениях  

(16) – (17) "�(�)
 – угол антиферромагнит-

ного вектора, возбужденного акустиче-

скими волнами, )((�)(�) − смещение про-

дольной акустической волны под влия-

нием "�(�).  
Без потери общности и во избежание 

громоздких вычислений в линейном урав-
нении (16) рассмотрен только случай с ну-
левой составляющей продольных и попе-

речных акустических волн (11) )( = )((<)
,  )+ = )+(<)

. В этом случае условие (5) для 
уравнения (16) выглядело так: 

 δ($  �)((<)� ∙ sin 2"< + 

+ δ+$  �)+(<)� ∙ cos 2"< ≠ 0.        (18) 

Решение уравнения (16), с учетом (18) 
и (12), определено в работе [20] в виде "�(�)( − J�) = o( − J�) × ARSq+CRUqB + +o∗( − J�)ACRsq+VRUqB;               (19) ξ =  − J�; 

o(ξ) = uδ(YZK�$(v� − v�) wAxyz − Ax{z|ch H ξK�I − 

− uδ+YZARUz$(v� − v�) H 1uY − v� − 1uY − v�I − 

− u2δ+YZK�$(v� − v�) ∙ th H ξK�I wAxyz − Ax{z|;  
o∗(ξ) = − uδ(YZK�$(v� − vQ) wAxFz − Ax}z|ch H ξK�I + 

+ uδ+YZARUz$(v� − vQ) H 1uY + vQ − 1uY + v�I + 

+ u2δ+YZK�$(v� − vQ) ∙ th H ξK�I wAxFz − Ax}z|; (20) 

θ = H2YX − 2ωXJ�� I ��J� − �� ;   
γ = �− ωX��� + YX�! ��J� − �� ;   

  v� = −uθ2 + �( uθ)� − 4γ2 ;   
   v� = −uθ2 − �( uθ)� − 4γ2 ,   (21) 

где v�, vQ – комплексно-сопряженные v�, v� соответственно.  
Таким образом, в уравнениях (17) с 

учетом (19)–(21) описан вклад магнитной 

подсистемы "�(�)  в генерацию продольной 

акустической волны )((�)(�)
. 

Расчет вклада магнитной подси-
стемы, возбужденной акустическими 
волнами, в генерацию продольных аку-
стических волн  

Определим вклад магнитной подси-
стемы с учетом обратного влияния акусти-
ческих волн (18) в генерацию продольной 
акустической волны. Для этого  решим 
уравнение (17) при условии (10), (19):  

� 16(�
����� − ��� �! )((�)(�) = 

= − δ(ρ6(�
2sh M − J�K� N
ch� M − J�K� N × 

× �[�o( − J�)� − uYXo( − J�)\ × 

ARSq+CRUqB + ACRSq+VRUqB × 

  × [�o∗( − J�)� + uYXo∗( − J�)\� . (22) 

Во взаимодействии акустических и 
магнитных подсистем участвует спек-
тральная составляющая ДГ, пропорцио-
нальная ~ARS+CRUB, поэтому решение (22) 
определено методом медленно меняю-
щихся амплитуд [15]: )((�)(�) ( , �) = �( − J�)ARST+CRUTB +  +�∗( − J�)ACRST+VRUTB .    (23) 
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Преобразуем (23) с учетом (13) к 
удобному для дальнейших вычислений 
выражению: )((�)(�) ( , �) = = �( − J�)ACRU(BCD+)ACRSq+VRUqB + +�∗( − J�)ARU(BCD+)ARSq+CRUqB.   (24) 

Подставим функцию (24) в уравнение 
(22) и приравняем выражения при равных 

экспонентах ARSq+CRUqB и ACRSq+VRUqB. Полу-
чим систему двух уравнений для неизвест-

ных амплитуд �( − J�) и �∗( − J�). С учетом комплексно-сопряженности фун-

кции �( − J�) и �∗( − J�) была опреде-

лена только �( − J�) из уравнения: 16(�
���( − J�)��� + u 2ωZ6(�

��( − J�)�� − 

− ωZ�6(� �( − J�) − ���( − J�)� � + 

+2uYZ ��( − J�)� + YZ��( − J�) = 

= − δ(ρ6(�
2sh M − J�K� N
ch� M − J�K� N ARU(BCD+) × 

× [�o∗( − J�)� + uYXo∗( − J�)\ . (25) 

Все функции в уравнении (25) зави-

симы от  − J�, введем обозначение  ξ =  − J�:  

�J�6(� − 1! ���(ξ)�ξ� − 2uωZ �J − 6(6(� ! × 

× ��(ξ)�ξ = − δ(ρ6(�
2sh H ξK�I
ch� H ξK�I ARUz × 

   × [�o∗(ξ)�ξ + uYXo∗(ξ)\.       (26) 

В (26) учтены законы дисперсии ДГ 

(13), из которых следует − ST{X�{ + YZ� = 0. 
 

Из (20) найдем �o∗(ξ)�ξ = wAxFz − Ax}z| × 

× �/� sh H ξK�I
ch� H ξK�I + /� 1ch� H ξK�I� + 

+/�uYARUz + K�wv�AxFz − vQAx}z| × 

× �/�th H ξK�I − /� 1ch H ξK�I� ; 
/� = uδ(YZ$(v� − vQ) ; /� = uδ+YZ$(v� − vQ) ;   

  /� = uδ+YZ$(v� − vQ) × 

× H 1uY + vQ − 1uY + v�I.       (27) 

Подставим (20), (27) в уравнение (26), 
получим 

�J�6(� − 1! ���(ξ)�ξ� − 2uωZ �J − 6(6(� ! × 

× ��(ξ)�ξ = − δ(ρ6(�
2sh M − J�K� N
ch� M − J�K� N ARUz × 

× �wAxFz − Ax}z| �/� sh H ξK�I
ch� H ξK�I + 

+/� 1ch� H ξK�I − /�K�uYX 1ch H ξK�I + 

+/�K�uYXth H ξK�I\ + u/�(Y + YX) × 

× ARUz+K�wv�AxFz − vQAx}z| × 

    × �/�th H ξK�I − /� 1ch H ξK�I��.    (28) 

Решим уравнение (28) методом Ла-
гранжа [22]: 
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�(ξ) = ��(ξ)��(ξ) + ��(ξ)��(ξ),   (29) 

где ��(ξ) = 1;   ��(ξ) = A{��T��q� z
 – фунда-

ментальная система решений однород-
ного дифференциального уравнения, со-
ответствующего (28), а неизвестные 
функции ��(ξ), ��(ξ) в (29) удовлетворяют 
системе уравнений 

  ���(ξ) + ���(ξ)A�RSTDVX� z = 0;         (30) 

���(ξ) 2uωZJ + 6( A�RSTDVX� z =  − 1J� − 6(�
δ(� ARUz × 

× 2sh M − J�K� N
ch� M − J�K� N MwAxFz − Ax}z| × 

× �/� sh H ξK�I
ch� M �K�N + /� 1ch� H ξK�I − 

− u/�K�YXch H ξK�I + u/�K�YXth H ξK�I
⎠⎟
⎞ + 

+u/�(Y + YX)ARUz+K� H/�th H ξK�I − 

−/� 1ch H ξK�I� wv�AxFz − vQAx}z|
⎠⎟
⎞ . (31) 

При определении решения системы 
уравнений (30)–(31) воспользовались таб-
лицей интегралов [24]: 

 ��(ξ) = δ((J + 6()4ρωZ�(J − 6() �(v� − vQ) × 

× K�� �/�arctgA zEF − /� sh H ξK�I
2ch� H ξK�I + 

+/� 12ch� H ξK�I� + /� Y + YX2Y AR�Uz� ;  (32) 

 

��(ξ) = δ((J + 6()4ρωZ�(J − 6() �K��(v� − vQ) × 

× �/�arctgA zEF − /� sh H ξK�I
2ch� H ξK�I + 

+/� 12ch� H ξK�I� + AM�RUC�RSTDVX� Nz × 

  × /�K� uY + uYX2uY − 2uωZJ + 6(
�.       (33) 

С учетом (21), (27) в (32), (33) введем 
переобозначения: 

�� = 4δ(�(J + 6()YZK��ρ$ωZ� (J − 6() ;    
�� = 4δ(δ+(J + 6()YZK��ρ$ωZ�(J − 6() ;    �� =                               = 2δ(�+(J + 6()(Y + YX)YZ(J� − ��)K�ρ$ωZ(J − 6()(ωX + Y6()(ωZ� − YZ���) . (34) 

Подставим (32)–(34) в (29), получим 
амплитуду смещения продольной волны 
(23): 

�(ξ) = ��� 12ch� H ξK�I + 

+�� �2arctgA zEF − sh H ξK�I
ch� M �K�N�� × 

   × u �A�RSTDVX� z − 1! + ��uAR�Uz.    (35) 

Из (34), (35) легко определить ком-
плексно-сопряженную к �(ξ) функцию �∗(ξ). Следовательно, определено иско-

мое решение )((�)(�) ( , �) (23). 

Проведем расчет вклада магнитной 
подсистемы в генерацию продольной аку-
стической волны с учетом обратного вли-
яния акустических волн при отсутствии 
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поглощения и без внешнего магнитного 
поля (αM = 0, ./ = 0). 

Вклад магнитной подсистемы в гене-
рацию продольной акустической волны )((�)(�) ( , �) (23) определяется ее амплиту-

дой ��(ξ) (35). Используя данные значе-
ний параметров к (1)–(3) и формулы (21), 
(27), (34), выполним расчет параметров 
амплитуды смещения продольной акусти-
ческой волны согласно (35): 

�(ξ) = 1,6 ∙ 10C�� �� sh(10�ξ)2ch�(10�ξ) − 

−arctgA�<�z − 14ch�(10�ξ)  × × sin(0,7 ∙ 10�ξ) − 0,37sin(4 ∙ 10�ξ)| + +1,6 ∙ 10C��u �� sh(10�ξ)2ch�(10�ξ) − 

−arctgA�<�z − 14ch�(10�ξ)I × × (cos(0,7 ∙ 10��) − 1) +    +0,37cos(4 ∙ 10�ξ)].         (36)  
Функции, входящие в формулу (36), 

абсолютно ограничены числом и не 
больше π. Тогда из (36) следует, что мак-
симальное, абсолютное смещение ампли-
туды продольной волны может достигать 
порядка 10C��м. 

Аналогичные результаты были полу-
чены в [25] при исследовании вклада маг-
нитной подсистемы, возбужденной дви-
жущейся ДГ в ортоферрите иттрия в при-
сутствии поглощения и внешнего магнит-
ного поля (./ ≠ 0, α1 ≠ 0), но без 
учета обратного влияния акустической 
подсистемы на магнитную. В этом случае 
влияние магнитной подсистемы на смеще-
ние продольной акустической волны 
уменьшается до порядка  10C�Q м при ско-
ростях движения ДГ, далеких от звуко-

вых. Но при скорости движения ДГ, близ-
кой к звуковой в пределах 1,3 ≤ |J − 6(| ≤≤ 12,8, вклад возрастает вплоть до макси-
мального порядка 10C� м.  

Выводы 

В настоящей работе получено явное 
решение смещения продольной акустиче-
ской волны, генерируемой магнитной 
подсистемой, возбужденной акустиче-
скими волнами в YFeO3 внутри движу-
щейся ДГ без учета поглощения и внеш-
него магнитного поля (23), (34), (35). Ис-
пользуя явное решение, установлено (36), 
что магнитная подсистема при условии 
(./ = 0, α1 = 0), на которую оказы-
вают обратное влияние акустические 
волны, генерирует продольные акустиче-
ские волны, максимальный размер ампли-
туды смещения которых может достигать 
порядка 10C��м при движении ДГ со ско-
ростью J (порядок 10Q м/с), далекой от 
продольной звуковой скорости 6( (поря-
док 10� м/с) (см. значения парметров к 
(1)–(3)). Из формул (34), (35) следует, что 
если скорость движения ДГ в ортоферрите 
иттрия близка к звуковой скорости (лежит 
в пределах 0,08 ≤ |J − 6(| ≤ 0,7), то 
наибольшее смещение продольной волны 
составит порядка 10C� м. Это становится 
соизмеримо с толщиной ДГ (10C� м). 

Таким образом, от скорости движения 
ДГ в YFeO3 зависит как величина вклада 
магнитной подсистемы в генерацию аку-
стических волн, так и обратное влияние 
акустической подсистемы на магнитную 
за счет поглощения и внешнего магнит-
ного поля. Это явление можно использо-
вать для измерений параметров гиперзву-
ковых волн (до 1012 Гц) оптическими ме-
тодами. 
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Резюме 

Цель. Разработка математической модели, адекватно описывающей нестационарный процесс захолажи-

вания длинных криогенных магистралей жидким водородом и позволяющей определять оптимальные ре-

жимные параметры, обеспечивающие минимальный расход хладагента при подготовке к огневым испыта-

ниям жидкостных ракетных двигателей. 

Методы. В качестве объекта моделирования использовался трубопровод в экранно-вакуумной изоляции, 

выполненный из стали 12Х18Н10Т, общей протяженностью 272,5 м, с диаметром проходного сечения 96 мм 

и толщиной стенки 2 мм. Суммарная масса запорного оборудования, размещенного на магистрали, состав-

ляет 246 кг. В трубопровод под избыточным давлением 0,2 МПа подается жидкий переохлажденный водо-

род, имеющий температуру на входе 19 К. Температура окружающей среды составляет 293 К.  

Результаты. В данной работе предложена модель охлаждения длинных изолированных трубопроводов при 

протекании по ним жидкого водорода, позволяющая определять параметры потока в различные моменты 

времени и оценивать время выхода магистрали в рабочий режим. На основе предложенной модели был раз-

работан автоматизированный алгоритм расчета процесса охлаждения длинного трубопровода криоген-

ными компонентами, позволяющий получать данные для построения температурных полей стенок трубо-

провода и потока транспортируемого криопродукта в различные моменты времени, а также  

определять время выхода магистрали в рабочий режим и момент наступления стационарного течения 

однофазного потока. Результаты проведенного расчета хорошо согласуются с экспериментальными дан-

ными. 

Заключение. Используя данную модель при различных начальных и граничных условиях, можно отработать 

оптимальный режим протекания реальных физических процессов и добиться минимальных потерь криоген-

ных компонент при минимальных временных затратах при подготовке стендовых систем к огневым испы-

таниям как одного из этапов производственного цикла ЖРД в машиностроении. 

 
Ключевые слова: жидкий водород; математическая модель; длинный трубопровод. 
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Investigation of the process of cooling cryogenic pipelines  

with liquid hydrogen to optimize firing tests of rocket engines 
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Abstract 

Purpose. Development of a mathematical model that adequately describes the non-stationary process of cooling long 

cryogenic pipelines with liquid hydrogen and makes it possible to determine optimal operating parameters that ensure 

minimal refrigerant consumption in preparation for firing tests of liquid rocket engines. 

Methods. A vacuum-insulated pipe made of cryogenic steel with a total length of 272.5 m, with a bore diameter of 96 

mm and a wall thickness of 2 mm was used as the modeling object. The total weight of the shut-off equipment located 

on the main line is 246 kg. Liquid supercooled hydrogen with an inlet temperature of 19 K is supplied to the pipeline 

under an excess pressure of 0.2 MPa. The ambient temperature is 293 K.  

Results. In this paper, we propose a model for cooling long insulated pipelines when liquid water flows through them, 

which makes it possible to determine the flow parameters at various points in time and estimate the time when the main 

line enters operating mode. Based on the proposed model, an automated algorithm was developed for calculating the 

cooling process of a long pipeline with cryogenic components, which makes it possible to obtain data for constructing 

the temperature fields of the pipeline walls and the flow of transported cryoproducts at various time points, as well as 

to determine the time when the main line enters operation and the moment of the onset of a stationary single-phase 

flow. The results of the calculation are in good agreement with the experimental data. 

Conclusion. Using this model under various initial and boundary conditions, it is possible to work out the optimal mode 

of real physical processes and achieve minimal losses of cryogenic components with minimal time spent in preparing 

bench systems for fire tests, as one of the stages of the production cycle of liquid propellants in mechanical engineering. 
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*** 

Введение 

Современное производство жидкост-
ных ракетных двигателей (ЖРД) характе-
ризуется исключительно высокими требо-
ваниями к надежности и, как следствие, к 
тщательности их экспериментальной от-
работки.  

Одними из этапов машиностроитель-
ного цикла являются различные виды ис-
пытаний изделия, которые позволяют оце- 
нить прочностные характеристики, тепло 

физические процессы, гидравлику и гер-
метичность, надежность и ресурс. Испы-
тания – это сложный измерительный, тех-
нологический процесс, интегрированный 
в производство. Проведение огневых ис-
пытаний является обязательным и наибо-
лее ресурсоемким этапом в цикле произ-
водства ЖРД. Согласно экспертным оцен-
кам, подтвержденным практикой ведущих 
предприятий двигателестроения, доля за-
трат на проведение огневых испытаний 
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может достигать 20–35% от общей стои-
мости производства двигателя. В общей 
структуре этих затрат можно выделить 
прямые (капитальные 40–60% и операци-
онные 30–50%) и косвенные (накладные 

10–20%) расходы1. При этом величина 
операционных затрат на криогенное топ-
ливо определяется в том числе длительно-
стью проведения испытаний и может со-
ставлять до 5% от общих расходов на ог-
невые испытания, что в абсолютных зна-
чениях измеряется сотнями миллионов 
рублей [1]. 

Значительную часть этих затрат со-
ставляют расходы на криогенные компо-
ненты топлива, подготовку и проведение 
испытаний. Ключевой операцией в цикле 
подготовки водородосодержащих ЖРД к 
огневым испытаниям является процесс за-
холаживания протяженных криогенных 
трубопроводов и магистралей подачи 
жидкого водорода. Данный процесс необ-
ходим для приведения элементов системы 
в термодинамически стабильное состоя-
ние, исключающее вскипание компонента 
при запуске двигателя. Также непредска-
зуемые флуктуации потока при охлажде-
нии трубопроводов жидким водородом 
создают экстремальные нагрузки на сам 
трубопровод и требуют эффективных ме-
тодов управления процессом охлажде-
ния2. Однако существующие, зачастую 
консервативные, регламенты захолажива-
ния приводят к значительным и неоптими-
зированным потерям дорогостоящего 
жидкого водорода, который сбрасывается 
в атмосферу через системы слива и сброса 
давления [2]. Как показали исследования 

NASA3, эмпирические зависимости для 

 
1 NASA's Management of the Artemis Mis-

sions (IG-22-003) // NASA OIG: [site]. 2022. 
URL: https://oig.nasa.gov/office-of-inspector-gen-
eral-oig/ig-22-003/ (дата обращения: 07.11.2025). 

2 Cryogenic heat transfer by a nanoporous 
surface: patent US 10209017B2. Appl. 
29.07.2014; publ. 19.02.2019. 

кипения при охлаждении трубопроводов 
жидкими криоагентами требуют серьёз-
ного уточнения [3]. В международной 
практике (в частности, в работах NASA) в 
последние годы активно развиваются по-
луэмпирические корреляции и численные 
модели процессов захолаживания крио-
генных линий, включая случаи двухфаз-
ного течения и нестационарного теплооб-
мена. В отечественной школе накоплен 
фундаментальный задел по гидродина-
мике газожидкостных систем и криоген-
ным системам, используемый как базис 
для инженерных расчётов протяжённых 
магистралей. Настоящая работа развивает 
прикладной инженерный подход к оценке 
интегральных характеристик процесса 
(время захолаживания, температурные 
поля) для задач оптимизации режимов 
подготовки испытательных стендов. В 
связи с этим за последние годы активно 
разрабатываются новые модели и корре-
ляции. 

Таким образом, задача разработки ма-
тематической модели, адекватно описыва-
ющей нестационарный процесс захолажи-
вания длинных криогенных трубопрово-
дов, является не только научно-техниче-
ской, но и прямой экономической задачей. 
Эффективное управление этим процессом 
позволит существенно снизить материаль-
ные затраты на каждом цикле испытаний. 

В представленной работе предложена 
математическая модель, описывающая 
процесс захолаживания длинных криоген-
ных трубопроводов жидким водородом. 
Практическая значимость работы заклю-
чается в возможности использования раз-
работанной модели для: 

3 Universal two-phase convection heat trans-
fer correlations for cryogenic pipe chilldown / 
S.R. Darr, M.E. Taliaferro, J.W. Hartwig,  
H. Wang, B.H. Huang, J.N. Chung // NASA 
Technical Reports Server. 2023. 
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– разработки оптимальных техноло-
гических регламентов захолаживания ис-
пытательных стендов и систем; 

– снижения прямых материальных за-
трат на приобретение жидкого водорода; 

– сокращения времени подготовки к 
проведению огневых испытаний. 

В результате это способствует сниже-
нию совокупной стоимости огневых ис-
пытаний и производства ЖРД в целом. 

Материалы и методы 

Перед достижением криогенными 
продуктами заданных расходных и темпе-
ратурных параметров осуществляется ста-
дия охлаждения магистралей. Данный 
процесс может проводиться с использова-
нием как жидкой, так и газообразной фазы 
хладагента. Критериями выбора фазового 
состояния служат: функциональное назна-
чение системы, требования к длительно-
сти и динамике переходных режимов, а 
также допустимые уровни термических 
напряжений в конструктивных элементах. 
В системах, работающих с жидкими крио-
генными компонентами, охлаждение, как 
правило, выполняется непосредственно 
этими продуктами [4]. На стадии охлажде-
ния стенок трубопроводов наблюдается 
активное парообразование, что объясня-
ется значительным превышением началь-
ной температуры стенок (близкой к темпе-
ратуре окружающей среды) не только над 
температурой насыщения Ts, но и над пре-
дельной температурой перегрева Tпп, 
определяющей верхнюю границу суще-
ствования жидкости. Таким образом, при 
высокой температуре стенок криогенная 
жидкость в пристеночной области не мо-
жет находиться в стабильном жидком со-
стоянии и практически мгновенно испаря-
ется. 

Особенности тепловых и гидродина-
мических процессов в период охлажде-
ния, а также невозможность обеспечения 
на выходе требуемых параметров про-
дукта позволяют выделить эту стадию в 

отдельный этап в общем цикле эксплуата-
ции криогенных трубопроводов [5]. На 
структуру потока в трубах влияет целый 
ряд факторов [6]: скорость потока, расход-
ное и истинное паросодержание, относи-
тельная плотность фаз, вязкость жидко-
сти, диаметр трубы, смачиваемость стенок 
жидкостью, пространственная ориентация 
трубы и др. [7] 

При подаче криогенных жидкостей в 
теплые магистрали их стенки устойчиво 
блокируются паровой пленкой, т. е. реали-
зуется пленочное кипение. С понижением 
температуры стенок ниже температуры 
предельного перегрева Tпп создаются 
предпосылки для кризиса пленочного ки-
пения, т. е. так называемого второго кри-
зиса, а также для замены его сначала пере-
ходным, а затем пузырьковым кипением, 
которое, в свою очередь, вырождается в 
конвективный теплообмен при приближе-
нии температуры стенки трубы к темпера-
туре насыщения. В процессе охлаждения 
трубопроводов кипение криогенных жид-
костей происходит при различных режи-
мах течения парожидкостной смеси [8]. В 
случае пленочного кипения в пристеноч-
ной зоне формируется паровая пленка, а 
соответствующие режимы движения 
двухфазного потока называют обращён-
ными. Наиболее типичными для условий 
охлаждения являются обращённые стерж-
невой, снарядный и дисперсный режимы. 
Когда температура стенки снижается до 
уровня, обеспечивающего её смачивание 
жидкостью, обращённые режимы сменя-
ются обычными, для которых характерно 
присутствие жидкой фазы у стенки. Охла-
ждение и заполнение протяжённых крио-
генных магистралей сопровождается ко-
лебаниями расхода и давления, вызван-
ными активным парообразованием. 

Экспериментальные исследования [9] 
показывают, что при течении недогретой 
жидкости паровая пленка имеет столь ма-
лую толщину, что практически не оказы-



Калядин О.В., Сергеев А.В., Гребенников А.А. и др.         Исследование процесса захолаживания криогенных… 99 

Известия Юго-Западного государственного университета. Серия: Техника и технологии /  
Proceedings of the Southwest State University. Series: Engineering and Technologies. 2025;15(4):95–108 

вает значительного сопротивления движе-
нию жидкой струи. Более того, наличие 
паровой прослойки способствует сниже-
нию касательных напряжений благодаря 
тому, что вязкость пара на порядок ниже 
вязкости жидкости. По мере продвижения 
по трубопроводу жидкость нагревается, 
что приводит к росту давления и сниже-
нию скорости заполнения. При достаточ-
ной протяжённости магистрали головная 
часть жидкости на определённом участке 
достигает температуры насыщения, соот-
ветствующей давлению в резервуаре, и 
поступление жидкости в трубопровод пре-
кращается. Одновременно нагрев жидко-
сти и увеличение паросодержания приво-
дят к разрушению стержневой структуры 
потока. 

При достижении жидкостью состоя-
ния насыщения (когда температура жид-
кости достигает температуры кипения Ts 
при данном давлении) практически весь 
тепловой поток от стенок расходуется на 
испарение. Скорость генерации пара и, 
как следствие, давление в трубопроводе 
продолжают возрастать, даже после пре-
кращения подачи новой порции жидкости. 
Давление в магистрали может в 1,5–2 раза 
и более превышать давление на входе. В 
дальнейшем по мере испарения остав-
шейся жидкости, отвода пара и частич-
ного возврата жидкости в сосуд интенсив-
ность парообразования снижается, и через 
некоторое время создаются условия для 
поступления следующей порции хлада-
гента. Это поступление вызывает менее 
значительный рост давления, поскольку в 
трубопроводе сохраняется повышенное 
давление и остаётся часть жидкости. В те-
чение всего периода охлаждения и запол-
нения протяжённых магистралей наблю-
даются колебания расхода и давления, ам- 

 
1. Способ объемного тушения пожара и 

устройство для его реализации: патент 
2253492 / Каришин В.В., Зарецкий Р.Ю.  

плитуда которых существенно меньше, 
чем в первом цикле1. 

Анализ экспериментальных данных 
показывает, что стационарный расход 
жидкости наступает практически одно-
временно с охлаждением стенки. Жид-
кость на выходе из трубопровода появля-
ется несколько раньше, чем труба полно-
стью охладится, и некоторое время из тру-
бопровода выходит парожидкостная 
смесь. 

Весь период охлаждения τ можно 
условно разделить на два этапа: первый 
этап τ1 – от начала подачи жидкости до по-
явления парожидкостной смеси на выходе 
и второй этап τ2 – oт момента появления 
парожидкостной смеси на выходе до пол-
ной реализации теплового ресурса стенки 
и установления стационарного расхода. 
Соотношение между продолжительно-
стью отдельных этапов и общим временем 
охлаждения (как и между длиной зоны ис-
парения и общей длиной трубопровода) 
может быть самое разное. В соответствии 
с соотношением длительности отдельных 
стадий охлаждения трубопроводы можно 
классифицировать на три типа: длинные, 
средние и короткие. Для длинных трубо-
проводов характерно, что момент появле-
ния жидкости на выходе практически сов-
падает с временем полного охлаждения,  
а их протяжённость существенно пре- 
вышает длину зоны испарения, т. е. 

1 иτ τ , l l<< . В средних трубопроводах 

продолжительность отдельных этапов со-
измерима. Зона испарения в таких маги-
стралях в начальный период охлаждения 
несколько меньше общей длины, но по 
мере снижения температуры стенок уве-
личивается и через некоторое время мо-
жет превзойти длину трубопровода, т. е. 

№ 20041013641/12; заявл. 21.01.2004; опубл. 
10.06.2005, Бюл. № 16. 
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1 2 иτ τ τ ,  l l   . В коротких трубопрово-

дах время появления жидкости на выходе 
пренебрежимо мало по сравнению с пол-
ным временем охлаждения 2τ τ  и иl l ; 

длина таких трубопроводов с самого 
начала недостаточна для полного испаре-
ния жидкости [1]. 

Ключевым параметром, влияющим на 
соотношение длительности этапов охла-
ждения и общего времени процесса, явля-
ется относительная длина трубопровода 
l/D. Согласно анализу экспериментальных 
данных, полученных для азота и кисло-
рода, к длинным трубопроводам отно-
сятся магистрали длиной более (1,5–2)·103 
калибров, а к коротким – менее 0,5·103 ка-
либров [1].  

В практике создания крупных крио-
генных систем длина основных магистра-
лей превышает несколько тысяч калибров 
и охлаждение длинных трубопроводов 
представляет наибольший практический 
интерес.  

В начальный момент транспорти-
ровки стенки трубопровода имеют темпе-
ратуру, существенно превышающую тем-
пературу насыщения криогенных жидко-
стей, что приводит к частичному или пол-
ному их испарению на выходе из маги-
страли. Особенности теплового и гидро-
динамического режимов в период охла-
ждения, а также невозможность поддер-
жания требуемых выходных параметров 
продукта обосабливают эту стадию от об-
щего цикла эксплуатации криогенных 
трубопроводов. 

При подаче криогенных жидкостей 
по нагретым магистралям, сопровождаю-
щейся испарением, распределение темпе-
ратуры в стенке и характеристики потока 
находятся решением системы уравнений, 
описывающих изменение параметров на 
участках с однофазным и двухфазным те-
чением. Получение точного решения со-
пряжено со значительными трудностями, 

поскольку характер взаимодействия и вза-
имного движения жидкой и газовой фаз 
значительно сложнее и разнообразнее по 
сравнению с гомогенными потоками. Дис-
кретные объемы каждой из фаз – пузыри и 
капли – содержат достаточно большое 
число молекул, и внутри любого объема 
движение среды может быть определено 
обычными дифференциальными уравне-
ниями: сплошности, движения и энергии. 
Однако в двухфазных потоках, помимо 
внешних границ, обусловленных стен-
ками канала, имеются внутренние поверх-
ности раздела фаз, которые переменны во 
времени и пространстве. На поверхности 
раздела возникают силовые и тепловые 
взаимодействия, и поэтому совместное 
рассмотрение уравнений гидродинамики 
каждой из фаз необходимо дополнить 
уравнениями, отражающими механиче-
ское и тепловое взаимодействие фаз на 
границах раздела. Одна из особенностей 
двухфазных течений заключается в много-
образии и сложности характера форм дви-
жения двухфазных потоков. С практиче-
ской точки зрения, помимо определения 
потерь жидкости, не менее интересной за-
дачей является оценка времени полного 
охлаждения криогенных магистралей и 
установление стационарного расхода про-
дукта. 

Для расчета времени охлаждения ма-
гистралей необходимо решить систему 
дифференциальных уравнений неразрыв-
ности, движения и энергии потока, а также 
теплопроводности для стенок с различ-
ными граничными условиями на внутрен-
ней и наружной поверхностях трубы. В 
том случае, когда охлаждение трубопро-
вода осуществляется однофазным пото-
ком, в качестве исходных уравнений ис-
пользуются следующие выражения: 

– уравнение неразрывности потока 

 ρ ρ
0

τ

W

z


 

 
;              (1) 
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– уравнение движения  

вн

4σ
ρ ρ

τ

R W W
W

z d z

  
   
  

;  (2) 

– уравнение энергии 

вн

4
ρ ρ

τ

i i q
W

z d

 
 

 
;         (3) 

– уравнения теплопроводности для 
стенок трубы: 

2 2

2 2

1
a

τ
w w w wT T T T

R RR z

    
  

   
; (4) 

 
  вн

вн вн

τ
λ τw

w w

T R
q a T R T

R


  


;  (5) 

 внеш

внеш

τ
λ w

w

T R
q

R


 


,         (6) 

где qвн и qвнеш  – плотности тепловых пото-
ков на внутренней и наружной поверхно-
стях трубы; Rвн и Rвнеш – внутренний и 
наружный радиусы трубы; Tw и T – темпе-
ратура стенки и потока. 

При описании процесса охлаждения 
тонкостенных изолированных магистра-
лей потоком криогенной жидкости с ча-
стичным или полным испарением сохра-
няется форма записи уравнения теплопро-
водности для стенок трубы (4) – (6), но из-
меняются уравнения неразрывности (7), 
движения (8) и энергии для потока (9) в 
связи с образованием парожидкостной 
смеси: 

  

  
ж г

ж ж г г

1 φ ρ φρ
τ

1 φ ρ φρ 0;

z

W W

 
   

 

   

     

(7)

 

  

 

     

ж г

ж г
ж г

ж г
ж ж г г

г ж г г г

4σ
1 φ ρ φρ

1 φ ρ φρ
τ τ

(1 φ)ρ φρ
τ τ

φρ φρ ;
τ

p
g

z D

W W

W W
W W

W W W
z


    


 

   
 
 

   
 

       
(8) 

  

 

ж ж г г

ж ж ж г г г

вн

1 φ ρ φρ
τ

4
(1 φ ρ φρ ,

i i

q
i W i W

z d


  




   


 
(9)

 

где φ  – объемное паросодержание потока 

(на участке испарения 0< φ <1, на участке 

газового течения φ =1); q – плотность 

теплового потока на внутренней поверх-
ности трубы; σ – касательное напряжение 
на стенке. 

Однако система уравнений остается 
незамкнутой, и для ее решения необхо-
димы дополнительные эксперименталь-
ные зависимости, отражающие взаимо-
связь объемного паросодержания, скоро-
стей каждой из фаз, касательных напряже-
ний на стенке, температуры паровой фазы 
и стенок, интенсивности теплоотдачи от 
стенок к продукту. Такие зависимости по-
лучены только для некоторых частных 
случаев и не имеют универсального харак-
тера из-за сложной природы двухфазных 
потоков. Отсутствие замыкающих законо-
мерностей достаточно общего характера 
делает невозможным решение системы 
исходных уравнений. Например, расчёты 
охлаждения магистралей в программном 
комплексе GFSSP (NASA) качественно 
воспроизводят динамику изменения тем-
пературы стенки, но могут заметно расхо-
диться с измеренной температурой потока 
без специальной калибровки модели [10]. 
В связи с этим методы определения харак-
теристик процесса охлаждения трубопро-
водов при подаче в них криогенных жид-
костей основаны на экспериментальных 
исследованиях и получении на их основе 
полуэмпирических и эмпирических соот-
ношений. 

В рамках настоящего исследования 
для приближённого решения поставлен-
ной задачи была использована гомогенная 
модель [11]. Основные ее допущения со-
стоят в предположении равенства линей-
ных скоростей пара и жидкости, термоди-
намического равновесия фаз, применимо-
сти к двухфазному течению зависимостей, 
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полученных для определения коэффици-
ента трения однофазного потока [12]. Это 
позволяет представить двухфазный поток 
в виде квазиоднородной среды, удельный 
объём в каждом сечении которой опреде-
ляется массовым паросодержанием и 
удельными объёмами каждой из фаз, т. е. 

 см ж г1 φ φV V V   .      (10) 

В этом случае в качестве расчетной 
может быть использована система уравне-
ний (1)–(6).  

Также принимается, что массовая 
скорость потока известна, теплопровод-
ность стенки равна нулю в направлении 
движения и бесконечно велика в направ-
лении нормали. Кроме того, рассматрива-
ется идеальная теплоизоляция внешней 
поверхности, исключающая приток тепла 
из окружающей среды. Данные упроще-
ния (имеющие обоснование с инженерной 
точки зрения) позволяют значительно 
упростить исходную систему уравнений и 
её решение. 

С учетом вышесказанного и прини-
мая во внимание, что pdi c dT , преобра-

зуем систему (1)–(6) к виду 

 
г pг вн

4α

τ ρ
wT TT T

W
z c d

 
 

 
;        (11) 

 
w

α
0

τ ρ δ
ww

pw

T TT

с


 


.          (12) 

В качестве граничных условий зада-
ется распределение температуры в газе и 
стенке в начальный момент времени и 
температура газа на входе: T(0,z) = f(z); 
Tw(0,z) = φ(z); T(,0) = ().  

Входящий в систему коэффициент 
теплоотдачи рассчитывается по формуле 

гδ

вн

λ
α Nu

d
 ,                 (13) 

где число Нуссельта с учетом гомогенной 
модели потока [13]: 

 
1/6

pг 0 вх0,8Nu 0,0065
c T T

Re
r


  

   
 

.  (14) 

Система дифференциальных уравне-
ний первого порядка в частных производ-
ных при произвольных граничных и 
начальных условиях может быть решена 
численными или аналитическими мето-
дами. Применение последних возможно, 
когда система уравнений и граничные 
условия являются линейными или хотя бы 
допускают линеаризацию. 

Полученные в результате решения си-
стемы функциональные зависимости ха-
рактеризуют распределение температур 
стенки и потока для любого момента вре-
мени в каждом сечении трубопровода. Ис-
пользуя их, можно оценивать время захо-
лаживания как произвольного участка ма-
гистрали, так и всего трубопровода в це-
лом. Кроме того, полученные зависимо-
сти, построенные для различных момен-
тов времени, могут быть использованы 
для вычисления текущего значения сред-
ней температуры стенки  

 
0

1 захL

ws w

зах

T T z dz
L

  ,            (15) 

и построения кривых изменения средней 

температуры  τwsT  и теплового ресурса 

стенок  τwQ  в любом сечении при раз-

личных начальных условиях 

      τ τ ρ δw ws pw ws wQ T T c T  . (16) 

Предложенная модель ориентирована 
на расчёт теплообмена на прямых участ-
ках магистралей. Влияние местных гид-
равлических сопротивлений (изгибы, за-
порная арматура) в явном виде не модели-
руется. Для практического применения 
модели к конкретным трубопроводам 
сложной конфигурации влияние таких 
элементов может быть учтено через кор-
ректировку (калибровку) эквивалентного 
коэффициента гидравлического сопротив-
ления на основе натурных или эталонных 
данных. 
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Результаты и их обсуждение 

На основе предложенной модели был 
разработан автоматизированный алго-
ритм расчета процесса охлаждения длин-
ного трубопровода криогенными компо-
нентами при подготовке стендовых си-
стем к огневым испытаниям [14]. В каче-
стве объекта моделирования был взят тру-
бопровод в экранно-вакуумной изоляции, 
выполненный из стали 12Х18Н10Т общей 
протяженностью 272,5 м, с диаметром 
проходного сечения 96 мм и толщиной 
стенки 2 мм. Суммарная масса запорного 
оборудования, размещенного на маги-
страли, составляет 246 кг. В трубопровод 
под избыточным давлением 0,2 МПа пода- 

ется жидкий переохлажденный водород 
[15], имеющий температуру на входе 19 К. 
Температура окружающей среды состав-
ляет 293 К. 

В ходе расчётов установлены законо-
мерности изменения температуры как 
жидкого водорода, так и стенки трубопро-
вода вдоль его длины в различные мо-
менты времени. Эти зависимости для ряда 
характерных сечений и временных точек 
представлены на рисунках 1–2. Визуали-
зация результатов обеспечивает нагляд-
ный анализ динамики захолаживания и 
позволяет оценить время, требуемое для 
достижения трубопроводом полностью 
охлаждённого состояния. 

  

а 

   

б 

Рис. 1. Распределение температуры потока (а) и стенки (б) по длине трубопровода в различные  

моменты времени 

Fig. 1. Temperature distribution of the flow (a) and the wall (б) along the pipeline length at different times 
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а 

 

б 

Рис. 2. Временная зависимость температуры потока (а) и стенки (б) в различных сечениях трубопровода 

Fig. 2. Time dependence of the flow (a) and wall (б) temperature at different pipeline cross-sections 

Используя построенные для различ-
ных моментов времени температурные 
поля по длине охлаждаемых труб (см. рис. 2) 

 w wT zT , можно вычислить текущее 

значение средней температуры стенки по 

формуле (15). На рисунке 3 представлена 
временная зависимость средней темпера-

туры стенки по длине трубы  τwsT . Она 

наглядно иллюстрирует процесс захола-
живания трубопровода в целом. 

 
Рис. 3. Временная зависимость средней температуры стенки 

Fig. 3. Time dependence of the average wall temperature 
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На основе полученных данных по 
формуле (16) были рассчитаны временные 
зависимости изменения теплового ресурса 

стенки для всей магистрали и отдельных 
ее участков от входного сечения (5, 50, 
150 м) (рис. 4). 

 

Рис. 4. Временная зависимость теплового ресурса стенки для различных участков трубопровода 

Fig. 4. Time dependence of the wall thermal resource for different sections of the pipeline 

Из приведенных рисунков видно, что 
расчетное время захолаживания маги-
страли составляет ~400 c, что хорошо со-
гласуется с данными, полученными в ре-
зультате экспериментов на действующих 
стендах испытательных комплексов. 

Заключение 

Таким образом, была предложена ма-
тематическая модель захолаживания 
длинных трубопроводов криогенными 
компонентами при подготовке стендовых 
систем к огневым испытаниям. На основе 
этой модели был создан автоматизирован-
ный алгоритм расчета, позволяющий по-
лучать данные для построения темпера-
турных полей стенок трубопровода и по-
тока транспортируемого криопродукта в 
различные моменты времени, а также 
определять время выхода магистрали в ра-

бочий режим и момент наступления ста-
ционарного течения однофазного потока. 
Поэтому разработанный алгоритм может 
быть интегрирован в систему управления 
испытательного стенда для автоматизации 
процесса захолаживания. Отметим, что 
современные стендовые комплексы уже 
внедряют автоматические системы, кото-
рые в реальном времени контролируют 
температуру и расход криогенного компо-
нента. Используя данную модель при раз-
личных начальных и граничных условиях, 
можно отработать оптимальный режим 
протекания реальных физических процес-
сов и добиться минимальных потерь крио-
генных компонент при минимальных вре-
менных затратах при подготовке стендо-
вых систем к огневым испытаниям, как 
одного из этапов производственного 
цикла ЖРД в машиностроении. 
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Оценка возможности индивидуального и совместного 

хроматографического определения моно- и дисахаридов 

Е.В. Мелихова1, В.С. Котельникова1, Д.А. Сырых1, Г.А. Егоров1 

1 Липецкий государственный технический университет 
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Резюме 

Цель работы – изучение условий разделения и определения моно- и дисахаридов в биологических пробах и 

образцах пищевых продуктов методом обращенно-фазовой высокоэффективной жидкостной хроматогра-

фии с УФ-детектированием. 

Методы. Исследования проводились на жидкостном хроматографе LC-20AD (Shimadzu, Япония) cо спек-

трофотометрическим детектором, колонкой Supelco LC-18-T (4,6×250 мм, 5 мкм) и программным обеспе-

чением LС solution. Альтернативный анализ проводили на спектрофотометре КФК-3 (Россия). 

Результаты. Экспериментально для индивидуального и совместного определения глюкозы, лактозы, са-

харозы и фруктозы методом высокоэффективной хроматографии установлен состав подвижной фазы 

ацетонитрил:вода – 80:20 и скорость ее потока – 0,6 мл/мин, при которых достигается наибольшая чув-

ствительность определения аналитов. Построены градуировочные функции индивидуального определе-

ния углеводов и в смеси, при индивидуальном определении глюкозы, лактозы, сахарозы и фруктозы линей-

ные диапазоны и пределы обнаружения (�¤R¥) составляют 0,5–30,0 мг/мл, �¤R¥  = 0,15 мг/мл; 25–45 мкг/мл, �¤R¥= 9 мкг/мл; 4–16 мг/мл, �¤R¥  = 1,03 мг/мл; 5–40 мг/мл, �¤R¥=2,35 мг/мл соответственно. При совместном 

определении: 0,5–15,0 мг/мл, �¤R¥  = 0,18 мг/мл для глюкозы; 30–45 мкг/мл, �¤R¥= 2 мкг/мл для лактозы;  

4–32 мг/мл, �¤R¥  = 2,18 мг/мл для сахарозы; 5–30 мг/мл, �¤R¥  = 3,34 мг/мл для фруктозы. Наибольшая чувстви-

тельность зафиксирована при определении лактозы. Результаты хроматографического анализа срав-

нены с данными спектрофотометрического определения углеводов, значимых расхождений не найдено. 

Заключение. Анализ образцов урины и пищевых продуктов (молоко, сироп и печенье для диабетиков) пока-

зал соответствие заявленного производителем содержания аналитов и подтвердил диагноз больного, 

предоставившего биологическую жидкость. Это позволяет рекомендовать предложенные методики для 

контроля за содержанием моно- и дисахаридов в образцах со сложными по составу матрицами. 

Ключевые слова: высокоэффективная жидкостная хроматография; углеводы; образцы пищевых продук-

тов; биологические жидкости. 
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Evaluation of the possibility of individual and joint chromatographic 

determination of mono- and disaccharides 

Elena V. Melikhova1, Veronika S. Kotelnikova1, Dmitry A. Syrykh1,  

Gennady A. Egorov1 

1 Lipetsk State Technical University, 

  30 Moskovskaya Str., Lipetsk 398055, Russian Federation 

 e-mail: mev80@yandex.ru 

Abstract 

Purpose of research. To study the conditions of separation and determination of mono- and disaccharides in biological 

samples and food samples by reverse-phase high-performance liquid chromatography with UV detection. 

Methods. The studies were carried out using an LC-20AD liquid chromatograph (Shimadzu, Japan) with a spectropho-

tometric detector, a Supelco LC-18-T column (4.6×250 mm, 5 microns) and LC solution software. An alternative anal-

ysis was performed on a KFK-3 spectrophotometer (Russia). 

Results. The composition of the mobile phase acetonitrile has been experimentally determined for individual and joint 

determination of glucose, lactose, sucrose and fructose by high-performance chromatography:water is 80:20 and its 

flow rate is 0.6 ml/min, at which the highest sensitivity of analyte detection is achieved. Calibration functions for the 

individual determination of carbohydrates and mixtures are constructed, with the individual determination of glucose, 

lactose, sucrose and fructose, the linear ranges and detection limits (�¤R¥) are 0.5–30.0 mg/ml, �¤R¥  = 0.15 mg/ml;  

25–45 mcg/ml, �¤R¥  = 9 mcg/ml; 4–16 mg/ml, �¤R¥  = 1.03 mg/ml; 5–40 mg/ml, �¤R¥  = 2.35 mg/ml, respectively. When 

combined: 0.5–15.0 mg/ml, �¤R¥  = 0.18 mg/ml for glucose; 30–45 mcg/ml, �¤R¥  = 2 mcg/ml for lactose; 4–32 mg/ml, �¤R¥  = 2.18 mg/ml for sucrose; 5–30 mg/ml, �¤R¥  = 3.34 mg/ml for fructose. The greatest sensitivity was recorded in the 

determination of lactose. The results of the chromatographic analysis were compared with the data of the spectropho-

tometric determination of carbohydrates, no significant discrepancies were found. 

Conclusion. Analysis of urine and food samples (milk, syrup, and cookies for diabetics) showed compliance with the 

analyte content stated by the manufacturer and confirmed the diagnosis of the patient who provided the biological fluid. 

This allows us to recommend the proposed methods for monitoring the content of mono- and disaccharides in samples 

with complex matrices. 
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Введение 

Состав и концентрация углеводов в 
пищевых продуктах является одним из по-
казателей их качества [1], а в биологиче-
ских жидкостях – маркером заболеваний 
поджелудочной и щитовидной желез, в 
том числе сахарного диабета [2]. Для 
определения углеводов применяют следу-
ющие методы анализа: титриметрические 
[3], спектрофотометрические [4], рефрак-
тометрический [5], поляриметрический 
[6], капиллярный электрофорез [7], а 
также хроматографические методы ана-
лиза [8]. Достоинствами последних явля-
ются: экспрессность [9], высокая чувстви-
тельность и селективность, объединение 
этапов разделения и определения много-
компонентных проб [10], надежное каче-
ственное и количественное определение 
широкого спектра веществ [11] в образцах 
молока и детского питания [12], вин [13] и 
вытяжках плодово-ягодных культур [14], 
в образцах коровьего молока, белой фа-
соли [15] и напитках [16]. Несмотря на то, 
что многие существующие хроматографи-
ческие методики имеют маркировку госу-
дарственных стандартов, ограничением 
их внедрения в лабораторный практикум 
предприятий зачастую является примене-
ние прекурсора – метанола в составе 
элюента [17]. В то же время развитие со-
временного аналитического приборостро-
ения [18], синтез новых сорбентов [19] 
требуют проведения дополнительных ис-
следований, позволяющих улучшить мет-
рологические характеристики хромато-
графических способов определения раз-
личных соединений, в том числе разделе-
ния и определения смеси углеводов. 

 

 
1 ГОСТ 31669-2012. Продукция соковая. 

Определение сахарозы, глюкозы, фруктозы и 
сорбита методом высокоэффективной жид- 

Материалы и методы 

Исследования проводились на жидкост-
ном хроматографе LC-20AD (Shimadzu, 
Япония) cо спектрофотометрическим де-
тектором, колонкой Supelco LC-18-T 
(4,6×250 мм, 5 мкм) и программным обес-
печением LС solution. Концентрации стан-
дартных растворов аналитов для хромато-
графического анализа подбирали опыт-
ным путем, ориентируясь на значения 
ПДК и их содержание в пищевых продук-
тах1. Приготовление серий стандартных 
водных растворов моно- и дисахаридов 
осуществляли путем растворения точной 
навески и методом последовательного 
разбавления до следующих диапазонов: 
2,5–30,0 мг/мл для глюкозы; 0,025– 
0,05 мг/мл для лактозы; 4–32 мг/мл для са-
харозы и 5,0–40,0 мг/мл для фруктозы. 

Альтернативный анализ проводили 
на спектрофотометре КФК-3 (Россия). 

Способ спектрофотометрического 

определения глюкозы. К 4 мл исследуе-
мого раствора приливали 1 мл 10%-ного 
едкого натра и нагревали на водяной бане 
3 мин. Взаимодействие протекало в соот-
ветствии с реакцией образования молоч-
ной и муравьиной кислот: 

C9H��O9 ©ª«¬,­°⎯̄⎯⎯⎯± CH�CH(OH)COOH +                               +2HCOOH 

Через 10 мин окрашенный в красно-
коричневый цвет раствор фотометриро-
вали при длине волны 510 нм в кювете 
толщиной 5 мм. Раствор сравнения – ди-
стиллированная вода. Количество сахара в 
исследуемом растворе находили по граду-
ировочному графику, экспериментально 
полученному в диапазоне концентраций 
1–5% раствора глюкозы. 

костной хроматографии. М.: Стандартин-
форм, 2019. 12 с. 
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Способ спектрофотометрического 

определения лактозы. К 2 мл исследуе-
мого стандартного раствора прибавляли  
6 капель 89%-ного раствора фенола и при-
ливали 5 мл концентрированной серной 
кислоты. В ходе реакции образуется лак-
тид: C��H��O��  +  C9Н³OH ¬{´«}⎯̄⎯⎯± C��H�QO��  +                       +C9HQO� 

Спустя 15 мин определяли оптиче-
скую плотность желто-коричневых рас-
творов при 490 нм. Содержание лактозы 
определяли по градуировочному графику, 
линейному в диапазоне 10–100 мкг/мл. 
Раствор сравнения содержал все компо-
ненты пробы, кроме аналита.  

Способ спектрофотометрического 

определения сахарозы. К 25 мл 1%-ного 
раствора дихромата калия последова-
тельно добавляли 0, 2, 4, 6, 8 и 20 мл стан-
дартного раствора сахарозы (4 мг/мл) и 
дистиллированной водой доводили объем 
до 100 мл. В соответствии с реакцией 

12 22 11 2 2 7 2 4

2 2 2 4 3 2 4

С H O  + 8K Cr O  + 32H SO

12СO  + 43H O + 8Cr (SO ) 8K SO



 
 

получали окрашенный в зеленый цвет  
раствор, который фотометрировали при  
580 нм относительно раствора сравнения с 
нулевой концентрацией сахарозы. По гра-
дуировочному графику, линейному в диа-
пазоне 0,08–0,5 мг/мл, находили содержа-
ние сахарозы в пробе. 

Способ спектрофотометрического 

определения фруктозы. К аликвоте 
пробы (1 мл) добавляли 6 мл 0,05%-ного 
резорцина, приготовленного в концентри-
рованной соляной кислоте с добавлением 
железоаммонийных квасцов. Полученную 
смесь нагревали в течение 1 мин при тем-
пературе 80°С. Охлажденный раствор ди-
стиллированной водой доводили до 25 мл. 
В ходе реакции образуется ксантеновый 
краситель, окрашивающий раствор в виш-
невый цвет с максимумом светопоглоще-
ния при 510 нм (l = 1 см). Концентрацию 

фруктозы определяли по градуировоч-
ному графику в диапазоне 0,5–5%. 

В качестве реальных объектов вы-
браны образцы пищевых продуктов с нор-
мированным содержанием углеводов, а 
именно: для определения лактозы – мо-
локо пастеризованное 3,5%-ное («Чаплы-
гинМолоко», Россия); для определения са-
харозы – диабетическое печенье («Спар-
так», Беларусь); для определения фрук-
тозы – диабетический сироп на фруктозе 
«Черника» (ООО «Биоинвентика», Рос-
сия). Определение глюкозы осуществляли 
в образце урины человека с сахарным диа-
бетом. 

Пробоподготовка молока для опреде-
ления лактозы: пробу (15 г) нагревали до 
температуры 40°С, аккуратно перемеши-
вали и охлаждали до 20°С. В полученный 
раствор вводили 5,5 мл 0,5 М раствора 
ацетата цинка и доводили объем до 50 мл 
дистиллированной водой. Смесь выдер-
живали 1 час при комнатной температуре 
и фильтровали. 

Пробоподготовка печенья для опре-
деления сахарозы: навеску измельченного 
продукта (2 г) обрабатывали теплой водой 
(50 мл) и нагревали на водяной бане в те-
чение 15 мин при 60°С. Затем для осажде-
ния мешающих компонентов добавляли 
по 10 мл 0,5 М растворов сульфата цинка 
и 1 М гидроксида натрия, перемешивали, 
фильтровали и объем раствора доводили 
дистиллированной водой до 100 мл. 

Пробоподготовка сиропа для опреде-
ления фруктозы: аликвоту продукта (5 мл) 
переносили в мерную колбу (100 мл), до-
водили дистиллированной водой до 
метки, перемешивали и фильтровали. 

Пробоподготовка урины для опреде-
ления глюкозы: к аликвоте (50 мл) 
биожидкости добавляли 10 мл 0,5%-ного 
раствора сульфата цинка и 5 мл 0,1 М рас-
твора гидроксида натрия, перемешивали, 
фильтровали и доводили объем до 100 мл 
дистиллированной водой. 
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Результаты и их обсуждение 

Эффективность хроматографирова-
ния в первую очередь зависит от природы 
и ионной силы элюента. Выбор подвиж-
ной фазы осуществляли с учетом полярно-
сти определяемых веществ и снижения 
объема органического элюента. 

При фиксированных условиях (тем-
пература колонки 30°С, скорость потока 

подвижной фазы 0,6 мл/мин) изучены три 
варианта подвижной фазы ацетонитрил : 
вода в соотношениях 40 : 60; 60 : 40;  
80 : 20. На основании полученных хрома-
тограмм рассчитаны значения асиммет-
рии хроматографического пика ($µ), 
число теоретических тарелок (N) и высота 
эквивалентной теоретической тарелки 
(ВЭТТ = Н) (табл. 1). 

Таблица 1. Влияние состава подвижной фазы на хроматографические характеристики индивидуального 
определения моно- и дисахаридов 

Table 1. Effect of mobile phase composition on chromatographic characteristics of individual determination of 
mono- and disaccharides 

Соотношение 
ацетонитрил : вода 

I, моль/л P tR, мин AS N H, мм 

Глюкоза 

40 : 60 10,87 8,44 3,2 1,43 935 0,27 
60 : 40 7,96 7,56 4,5 1,5 1296 0,19 
80 : 20 5 6,68 6,5 1,25 2704 0,09 

Лактоза 

40 : 60 10,87 8,44 8,5 1,27 1171 0,21 
60 : 40 7,96 7,56 9 1,48 2025 0,12 
80 : 20 5 6,68 11,2 1,5 5575 0,04 

Сахароза 

40 : 60 10,87 8,44 6,2 1,5 1836 0,14 
60 : 40 7,96 7,56 7,5 1,25 2460 0,1 
80 : 20 5 6,68 8,7 1,16 4844 0,05 

Фруктоза 

40 : 60 10,87 8,44 11,7 1,75 3422 0,07 
60 : 40 7,96 7,56 12,5 1,37 5102 0,05 
80 : 20 5 6,68 14 1,23 8711 0,03 

 

Из приведенных данных выявлена за-
кономерность: при уменьшении ионной 
силы (I) и полярности элюента (P) времена 
удерживания углеводов (�x) увеличива-
ются, что, вероятно, связано с замедле-
нием процессов сорбции / десорбции. С 
уменьшением I и P происходит уменьше-
ние коэффициента асимметрии и повыше-
ние эффективности колонки. Также высо-
кие значения ионной силы элюента вызы-
вали повышение шумов базовой линии 
(рис. 1). Исходя из вышесказанного, все 
дальнейшие исследования проводили при 

соотношении подвижной фазы ацетонит-
рил : вода 80 : 20. 

Также для успешного разделения и 
определения веществ важен выбор и под-
держание оптимальной температуры ко-
лонки (¶к). Для исследования влияния ¶к 
на характеристики колонки на модельных 
растворах углеводов проведена серия экс-
периментов при значениях термостата ко-
лонки от 30 до 60ºС с шагом повышения 
температуры 5ºС. Верхний предел выби-
рался исходя из стабильности аналитов, а 
нижний – по рабочему диапазону ко-
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лонки. Все эксперименты проводили с вы-
бранной ионной силой подвижной жидкой 
фазы 5 моль/л и фиксированным значе-
нием скорости потока 0,6 мл/мин. Темпе-
ратуру изменяли линейно и ступенчато. 

Установлено, что с увеличением ¶к 
наблюдается незначительное уменьшение 
времени удерживания углеводов (табл. 2) 
наряду со значительным падением пара-
метров эффективности колонки. 

 

Рис. 1. Флуктуация шума при определении стандартного раствора лактозы (элюент ацетонитрил : вода  

40 : 60) 

Fig. 1. Noise fluctuation in the determination of a standard lactose solution (acetonitrile eluent : water 40 : 60) 

Таблица 2. Влияние температуры колонки на параметры хроматографирования стандартных растворов 
углеводов 

Table 2.Influence of column temperature on chromatography parameters of standard carbohydrate solutions 

Параметры 
Температурные колонки, °С 

30 35 40 45 50 55 60 
Глюкоза 

tR, мин 6,7 6 5,5 5,2 4,8 4,6 4,3 
H 0,22 0,2 0,2 0,21 0,19 0,2 0,18 
N 4225 3600 1936 1730 1474 2116 1183 

Лактоза 

tR, мин 11,5 11 10,5 9,7 9,3 9 8,7 
H 0,15 0,14 0,14 0,12 0,13 0,12 0,12 
N 8464 5378 7056 6022 3844 5184 4844 

Сахароза 

tR, мин 8,5 8 7,8 7,5 6,9 6,6 6,3 
H 0,11 0,11 0,1 0,08 0,08 0,1 0,07 
N 4624 2844 3894 2500 3047 2788 1764 

Фруктоза 

tR, мин 14,3 14,1 13,5 13,2 12,8 12,4 12 
H 0,44 0,4 0,4 0,38 0,35 0,3 0,3 
N 9088 8836 5951 7744 7282 5020 6400 

 

Выбор скорости подачи элюента осу-
ществляли в диапазоне от 0,5 до  
0,7 мл/мин с шагом 0,05 мл/мин (рис. 2). 
Минимальные значения высоты эффек- 

тивной теоретической тарелки опреде-
ляют максимальную скорость потока 
элюента, которая составила для каждого 
из аналитов 0,6 мл/мин, что позволяет про- 
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гнозировать успешное разделение и опреде-
ление смеси аналитов. Правильность вы-
бора оптимальной скорости элюента (·опт) 
подтверждена теоретическими расчетами 
по уравнению Ван-Деемтера. Для глюкозы 

значение ·опт составило 0,58 мл/мин; для 
лактозы – ·опт = 0,61 мл/мин; для сахаро- 
зы – ·опт = 0,60 мл/мин; для фруктозы – ·опт = 0,59 мл/мин.

 

Рис. 2. Зависимости ВЭТТ и числа теоретических тарелок глюкозы (а), лактозы (b), сахарозы (c), 

фруктозы (d) от скорости подачи элюента 

Fig. 2. The dependences of the VETT and the number of theoretical plates of glucose (a), lactose (b), sucrose  

(c), and fructose (d) on the eluent feed rate 

В дальнейшей работе при выбранных 
условиях хроматографирования (I = 5 моль/л; ¶к = 30°C; υпотока = 0,6 мл/мин) получены 
градуировочные функции индивидуаль-
ного определения аналитов и рассчитаны 

их метрологические характеристики  
(табл. 3). Методики характеризуются хо-
рошей воспроизводимостью, наибольшая 
чувствительность зафиксирована при 
определении лактозы.
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Таблица 3. Метрологические характеристики индивидуального определения глюкозы, лактозы,  
сахарозы и фруктозы (n = 3, P = 0,95) 

Table 3. Metrological characteristics of individual determination of glucose, lactose, sucrose and fructose  
(n = 3, P = 0,95) 

Аналит 
Уравнение  

градуировочной функции 
v� 

Cmin, 
мг/мл 

Линейный  
диапазон, мг/мл 

sr 

Глюкоза y = 0,01x + 0,02 0,942 0,15 0,5–30,0 0,09 

Лактоза y = 3,86x – 0,01 0,923 0,009 0,025–0,045 0,03 

Сахароза y = 0,004x + 0,001 0,937 1,03 4–16 0,02 
Фруктоза y = 0,01x – 0,07 0,943 2,35 5–40 0,03 

 
При хроматографировании смеси уг-

леводов при аналогичных параметрах 
(рис. 3) установлено, что время удержива-
ния компонентов меняется незначительно 
и сродство аналитов к неподвижной жид-
кой фазе по рассчитанным значениям се-

лективности (α) одинаково. Коэффици-
енты разрешения пиков (vµ) значительно 
больше минимума (1,5) для всех веществ 
(табл. 4), что позволяет легко идентифи-
цировать определяемые углеводы по вре-
мени удерживания. 

 

Рис. 3. Хроматограмма стандартной смеси глюкозы, лактозы, сахарозы и фруктозы 

Fig. 3. Chromatogram of a standard mixture of glucose, lactose, sucrose and fructose 

Таблица 4. Параметры разделения смеси глюкозы, лактозы, сахарозы и фруктозы 

Table 4. Separation parameters of a mixture of glucose, lactose, sucrose and fructose 

Аналиты α RS 
Глюкоза / сахароза 1,34 4,4 
Сахароза / лактоза 1,28 4,5 
Лактоза / фруктоза 1,25 4,7 
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Построены градуировочные функции 
совместного определения аналитов и рас- 

считаны метрологические характери-
стики, представленные в таблице 5.

Таблица 5. Метрологические характеристики совместного определения глюкозы, лактозы, сахарозы  

и фруктозы методом ВЭЖХ (n = 3; P = 0,95) 

Table 5. Metrological characteristics of the combined determination of glucose, lactose, sucrose and fructose  

by HPLC (n = 3; P = 0.95) 

Аналит 
tR,  

мин 
AS 

Уравнение  
градуировочной функции 

R2 
Cmin, 
мг/мл 

Линейный  
диапазон, мг/мл 

sr 

Глюкоза 6,32 1,05 y = 0,01x + 0,02  0,983 0,18 0,5–15,0 0,02 

Лактоза 11,21 1,25 y = 4,12x – 0,1 0,986 0,02 0,030–0,045 0,04 

Сахароза 8,38 1,23 y = 0,004x + 0,002 0,967 2,18 4–32 0,07 

Фруктоза 13,96 1,08 y = 0,01x – 0,06 0,978 3,34 5–30 0,06 
 

Метрологические характеристики 
альтернативного метода анализа – спек-
трофотометрического определения угле-
водов представлены в таблице 6. Проверка 
правильности результатов предложенной 
методики осуществлена методом «вве-
дено-найдено» и при сравнении результа-
тов с данными спектрофотометрических 

методик определения глюкозы, лактозы, 
сахарозы и фруктозы (табл. 7). Статисти-
ческий анализ результатов, полученных 
двумя методами, показал, что они равно-
точны. Сопоставление результатов по 
критерию Фишера не выявило значимых 

расхождений.

Таблица 6. Метрологические характеристики спектрофотометрического определения углеводов  

(n = 3; P = 0,95) 

Table 6. Metrological characteristics of spectrophotometric determination of carbohydrates (n = 3; P = 0.95) 

Аналит 
λºª»,  

нм 
Уравнение  

градуировочной функции 
v� 

Cmin, 
мг/мл 

Линейный  
диапазон, мг/мл 

sr 

Глюкоза 510 y = 0,04x + 0,03 0,996 0,1 0,5–30,0 0,2 

Лактоза 490 y = 0,01x + 0,04 0,978 0,01 0,02–0,05 0,2 

Сахароза 580 y = 0,02x + 0,01 0,991 0,9 4–16 0,1 

Фруктоза 510 y = 0,01x + 0,02 0,983 1,1 10–40 0,1 

Таблица 7. Проверка правильности способов определения углеводов методом «введено-найдено»  

(n = 3; Р = 0,95; Fкрит = 19,2) 

Table 7. Checking the correctness of methods for determining carbohydrates using the "entered-found" method 

(n = 3; Р = 0.95; Fcr = 19.2) 

ВЭЖХ Спектрофотометрический метод oэкс 
введено, мг/мл найдено, мг/мл sr введено, мг/мл найдено, мг/мл sr 

Глюкоза 

10,00 9,98±0,03 0,02 10,00 9,95±0,05 0,03 2,9 
Лактоза 

0,04 0,04±0,02 0,04 0,040 0,030±0,008 0,07 2,1 
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Окончание табл. 7 

End of Table 7 

ВЭЖХ Спектрофотометрический метод oэкс 

введено, мг/мл найдено, мг/мл sr введено, мг/мл найдено, мг/мл sr  

Сахароза 

6,00 5,99±0,05 0,07 6,00 5,96±0,05 0,04 3 
Фруктоза 

30,00 29,98±0,3 0,06 30,00 29,93±0,08 0,01 1,7 
 

Предложенный способ хроматогра-
фического определения и разделения 
смеси углеводов апробирован при анализе 
реальных объектов. Метрологические ха-
рактеристики результатов анализа реаль-
ных объектов (молоко пастеризованное 
3,5%-ное («ЧаплыгинМолоко», Россия) – 

образец 1, диабетическое печенье («Спар-
так», Беларусь) – образец 2, диабетиче-
ский сироп на фруктозе «Черника» (ООО 
«Биоинвентика», Россия) – образец 3) 
предложенным и альтернативным спосо-
бами представлены в таблице 8. 

Таблица 8. Результаты определения глюкозы, лактозы, сахарозы и фруктозы в образцах реальных  
объектов (n = 3; P = 0,95) 

Table 8. Results of determination of glucose, lactose, sucrose and fructose in samples of real objects  
(n = 3; P = 0.95) 

Показатели 
Аналит 

Глюкоза Лактоза Сахароза Фруктоза 
Проба Урина Образец 1 Образец 2 Образец 3 
Норма*/ содержание, указанное на 
упаковке на 100 г 0,80–1,20 г/л* 5,00 г 0,60 мг 62,00 г 
Содержание, установленное методом 
ВЭЖХ 3,56±0,01 4,98±0,01 0,59±0,01 61,97±0,02 
Содержание, установленное спектро-
фотометрическим методом 3,34±0,08 4,85±0,02 0,56±0,03 59,99±0,08 

 
Установленное содержание глюкозы 

в образце урины пациента с сахарным диа-
бетом подтверждает его заболевание. В 
образцах пищевых продуктов нарушений 
по содержанию углеводов согласно ТУ не 
выявлено. 

Выводы 

Таким образом, в работе предложена 
методика индивидуального и совместного 
определения углеводов методом ОФ 
ВЭЖХ со спектрофотометрическим де-
тектированием: при индивидуальном 
определении глюкозы, лактозы, сахарозы 
и фруктозы линейные диапазоны и пре-

делы обнаружения (сmin) составляют: 
0,5–30,0 мг/мл, сmin = 0,15 мг/мл; 25– 
45 мкг/мл, сmin = 9 мкг/мл; 4–16 мг/мл,  
сmin = 1,03 мг/мл; 5–40 мг/мл, сmin =  
= 2,35 мг/мл соответственно. При совмест-
ном определении: 0,5–15,0 мг/мл, сmin =  
= 0,18 мг/мл для глюкозы; 30–45 мкг/мл, �º½¾ = 2 мкг/мл для лактозы; 4–32 мг/мл, 
сmin = 2,18 мг/мл для сахарозы; 5–30 мг/мл, 
сmin = 3,34 мг/мл для фруктозы. Методика 
апробирована при анализе реальных объ-
ектов. Полученные данные сопоставлены 
с результатами спектрофотометрического 
метода анализа, значимых расхождений 
не выявлено. 
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название (полужирный), аннотация и ключевые слова, текст с рисунками и таблицами, список литературы. Авторы, 
название, аннотация и ключевые слова, названия рисунков и таблиц, список литературы приводятся на русском и 
английском языках. 

Перед основным текстом печатается аннотация (200–250 слов), отражающая краткое содержание статьи. Ан-
нотация должна быть рубрицирована (цель, методы, результаты, заключение). Текст статьи должен иметь следую-
щую структуру:  введение, материалы и методы, результаты и их обсуждение, выводы (рекомендации). Например: 
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Резюме 

Цель. В статье рассматривается агентная модель прогнозирования обеспеченности кадрами 
градообразующего предприятия, основанная на структуризации поведения агента и определения 
влияния его внутреннего представления об окружающем мире на его деятельность. ... 
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В конце статьи приводятся сведения об авторе(ах)  на русском и английском языках: фамилия, имя, отчество 
полностью, ученое звание, ученая степень, должность, организация, город, страна, e-mail. 

8. При формировании текста не допускается применение стилей, а также внесение изменения в шаблон или 
создание собственного шаблона. Слова внутри абзаца следует разделять одним пробелом; набирать текст без при-
нудительных переносов; не допускаются разрядки слов. 

12. Список литературы к статье обязателен и должен содержать все цитируемые и упоминаемые в тексте ра-
боты (не менее 20). Пристатейные библиографические списки оформляются в соответствии с ГОСТ Р 7.0.5-2008. «Биб-
лиографическая ссылка. Общие требования и правила составления». Ссылки на работы, находящиеся в печати, не допус-
каются. При ссылке на литературный источник в тексте приводится порядковый номер работы в квадратных скобках. 

13. В материале для публикации следует использовать только общепринятые сокращения. 
Все материалы направлять по адресу: 305040, г. Курск, ул. 50 лет Октября, 94. ЮЗГУ, редакционно-изда-

тельский отдел. Тел.(4712) 22-25-26, тел/факс (4712) 50-48-00. 
E-mail: rio_kursk@mail.ru 
Изменения и дополнения к правилам оформления статей и информацию об опубликованных номерах можно 

посмотреть на официальном сайте журнала: https://swsu.ru/izvestiya/seriestechniq/. 


