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Резюме 

Цель. Исследование электрокаталитической активности пористых композиционных нанопленок 
CNPs/CuO, обусловливающей деградацию молекулярных газов. 
Методы исследования включали использование специально разработанной экспериментальной установки, 
состоящей из стеклянной камеры с замкнутым циклом продувки воздуха, нагнетателя для создания посто-
янного воздушного потока, а также воздушного фильтра с композиционными электрокаталитическими 
нанопленками. В ходе эксперимента в камеру капельным методом вносились изопропиловый спирт и бути-
лацетат. Пары этих веществ, испаряясь под действием воздушного потока, проходили через композитный 
фильтр. Эффективность деградации летучих органических соединений фиксировалась в реальном вре-
мени с помощью газового сенсора, а в отдельных сериях опытов дополнительно проводился ИК-Фурье спек-
тральный анализ для более подробного изучения процессов, протекающих в системе. 
Результаты исследования демонстрируют высокую эффективность электрокаталитического разложе-
ния летучих органических соединений на композиционных покрытиях CNPs/CuO. Приложенная электриче-
ская напряженность инициирует образование электрон-дырочных пар, которые, взаимодействуя с молеку-
лами воды и кислорода, генерируют активные формы кислорода (•OH, O2

-), обеспечивающие полную мине-
рализацию изопропилового спирта и бутилацетата до CO2 и H2O. С помощью ИК-Фурье-спектроскопии за-
фиксировано отсутствие характеристических полос поглощения исходных соединений и появление сигна-
лов продуктов реакции. 
Заключение. Согласно результатам ИК-Фурье-спектроскопии, прохождение высокомолекулярных газов, 
таких как изопропиловый спирт и бутилацетат, сквозь воздушный фильтр с композиционными пленками 
CNPs/CuO с приложенным электрическим напряжением (9В, 17В), приводит к их полному разложению на CO2 
и H2O за счет электрокаталитических процессов, протекающих на поверхности синтезированных пленок. 
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Abstract 

Purpose. Study of electrocatalytic activity of porous composite nanofilms CNPs/CuO, causing degradation of molecular 
gases. 
Methods. The research methods included the use of a specially designed experimental setup consisting of a glass 
chamber with a closed-loop air flow system, a blower to generate a constant air flow, and an air filter with composite 
electrocatalytic nanofilms. During the experiment, isopropyl alcohol and butyl acetate were added dropwise to the 
chamber. The vapors of these substances, evaporating under the influence of the air flow, passed through the compo-
site filter. The degradation efficiency of volatile organic compounds was recorded in real time using a gas sensor, and 
in certain series of experiments, Fourier transform infrared (FTIR) spectral analysis was additionally performed to study 
the processes occurring in the system in more detail. 
The study results demonstrate the high efficiency of the electrocatalytic decomposition of volatile organic compounds 
on CNPs/CuO composite coatings. Applied electrical voltage initiates the formation of electron-hole pairs, which, by 
interacting with water and oxygen molecules, generate reactive oxygen species (OH, O2

-), ensuring the complete min-
eralization of isopropyl alcohol and butyl acetate to CO2 and H2O. Fourier transform IR spectroscopy revealed the 
absence of characteristic absorption bands of the starting compounds and the appearance of signals from the reaction 
products. 
Conclusion. According to the results of FTIR spectroscopy, the passage of high-molecular gases such as isopropyl 
alcohol and butyl acetate through an air filter with CNPs/CuO composite films with applied electric voltage (9V, 17V) 
leads to their complete decomposition into CO2 and H2O due to electrocatalytic processes occurring on the surface of 
the synthesized films. 

Keywords: electrocatalytic decomposition; composite nanomaterials; copper oxide; carbon nanoparticles; isopropyl 
alcohol; butyl acetate. 
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Введение 

В последние десятилетия гибридные 
материалы на основе оксида меди (CuO) и 
углеродных наноструктур, таких как угле-
родные нанотрубки (УНТ), графен и угле-
родные квантовые точки, привлекли вни-
мание исследователей благодаря своей 
высокой эффективности в процессах раз-
ложения летучих органических соедине-
ний (ЛОС). Это уникальное сочетание 
свойств обусловлено несколькими факто-
рами: высокой окислительно-восстанови-
тельной способностью CuO из-за перехо-
дов Cu²⁺/Cu⁺, а также выраженной элек-
тронной проводимостью и развитой по-
верхностью углеродных носителей, кото-
рая может достигать 1500 м²/г. Эти харак-
теристики, в свою очередь, могут быть до-
полнены плазмоно-усиленным катализом 
в видимом световом диапазоне, что суще-
ственно увеличивает эффективность про-
цессов деградации ЛОС, сульфидом  
кадмия с MOF-покрытием [1], наноком- 
позитом CNTs/CuO, полученным мето- 
дом гидротермального синтеза [2],  
TiO2–CuO@GO бионанокомпозитом [3]. 

Современные исследования, напри-
мер, очистки сточных вод от органиче-
ских загрязнителей La2O3 нанокомпози-
том CuO [4] и наночастицами Cu, покры-
тых Cu2O [5], показывают, что гибридные 
катализаторы на основе наночастиц CuO и 
углеродных нанотрубок (УНТ) обладают 
высокой эффективностью в деградации 
бутилацетата и изопропилового спирта 
при температурах 180–250°C, достигая 
конверсии 90–98%. Основными механиз-
мами синергизма являются: выдающиеся 
электрон-транспортные свойства УНТ, 
которые способствуют быстрому пере-
носу электронов к активным центрам CuO 
и стабилизируют промежуточные про-
дукты; окислительно-восстановительные 
циклы Cu²⁺/Cu⁺, приводящие к образова-
нию активных радикалов, таких как •O₂⁻ и 

•OH, способствующих деградации орга-
нических соединений; а также особенно-
сти структуры композита, обеспечиваю-
щие высокую удельную поверхность  
(680 м²/г против 45 м²/г для чистого CuO) 
и сниженную энергию активации  
(52 кДж/моль по сравнению с 78 кДж/моль 
для CuO), что дает кинетическое преиму-
щество, ускоряет реакции в фотокаталити-
ческой деградации метиленового синего 
[6] и в  фотокаталитическом селективном 
окислении ароматических спиртов в аро-
матические альдегиды [7], а также увели-
чивает антибактериальную активность 
нанокомпозита CuS с углеродными кван-
товыми точками [8]. 

Потенциальное применение этих тех-
нологий охватывает широкий спектр об-
ластей, включая промышленную очистку 
(срок службы катализаторов до 8000 ча-
сов, экономия энергии до 40% по сравне-
нию с TiO₂), высокочувствительные сен-
соры (с порогом обнаружения 10-4% и вре-
менем отклика менее 15 с) и медицинские 
воздухоочистители. Перспективы иссле-
дований новой генерации каталитических 
систем связаны с разработкой мембран-
ных реакторов с фотокаталитическими по-
крытиями для «умных» материалов и эко-
номичных методов синтеза, которые мо-
гут снизить стоимость на 30–50% для фо-
токаталитического разложения органиче-
ских красителей [9], бензола и толуола 
[10]. 

Ключевое уравнение, описываю- 
щее динамику разложения, имеет вид  
ln(C₀/C) = kτ, где k = 0,12 мин⁻¹ (при 
220°C) для бутилацетата. Эти технологии 
уже нашли применение в автомобильных 
катализаторах и фармацевтике, а будущие 
исследования будут направлены на повы-
шение селективности процессов разложе-
ния (до 99%) и устойчивости катализато-
ров к ядам. Таким образом, изучение и оп-
тимизация гибридных катализаторов на 
основе CuO и углеродных наноструктур 
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представляют собой актуальное направле-
ние для развития технологий очистки 
окружающей среды и создания эффектив-
ных устройств на их основе, таких как 
электрокатализаторы [11], катализаторы 
для производства зеленого водорода пу-
тем расщепления воды [12], компоненты 
для солнечных батарей [13]. В данном ис-
следовании композиционные нанострук-
туры CNPs/CuO были синтезированы ме-
тодом электрофоретического осаждения в 
постоянном электрическом поле. Для ана-
лиза газофазных соединений использова-
лись датчики качества воздуха и ИК-
Фурье-спектрометр, что позволило иссле-
довать процесс разложения молекулярных 
газов на синтезированных нанострукту-
рах. В работе изучено разложение летучих 
органических соединений, включая изо-
пропиловый спирт и бутилацетат, на ком-
позиционных нанопленках при различных 
значениях приложенного напряжения. 

В данной работе осуществляется ис-
следование процесса деградации молеку-
лярных газов на композиционных нано-
структурах CNPs/CuO при различных 
напряжениях 0, 9 и 17 В. 

Материалы и методы 

Исследовано влияние электрокатали-
тических процессов, протекающих на син-
тезированных композитных пленках, при 
фильтрации молекулярных газов, включая 
изопропиловый спирт ((CH3)2CHOH) и бу-
тилацетат (C6H12O2). Для проведения экс-
периментов разработана специализиро-
ванная установка, состоящая из герметич-
ной стеклянной камеры с замкнутой си-
стемой циркуляции воздуха, воздушного 
насоса, фильтрующего элемента с компо-
зиционными покрытиями [14], а также га-
зового сенсора и измерительной ячейки 
ИК-Фурье-спектрометра. Жидкие пробы 
реагентов вводились капельным методом 
в замкнутую систему, где при испарении 
образовывались пары, которые под дей-
ствием воздушного потока от нагнетателя 
проходили через фильтрующий материал. 
Мониторинг процесса осуществлялся с 
помощью прецизионного датчика каче-
ства воздуха (AGS02MA), регистрирую-
щего изменение концентрации газов в ре-
альном времени. 

 
Рис. 1. Блок-схема экспериментальной установки для исследования каталитической деградации газов  

на композиционных наноструктурах CNPs/CuO: 1 – композитные пленки на воздушном фильтре;  

2 – газовый датчик; 3 – датчик качества воздуха (E = 0 B; 9 B; 17 B); 4 – изопропиловый спирт, 

бутилацетат; 5 – расход газа в закрытой системе; 6 – модуль интерфейса АЦП на основе 

Ардуино 

Fig. 1. Block diagram of the experimental setup for studying the catalytic decomposition of gases on 

 CNPs/CuO nanocomposite structures: 1 – composite films on the air filter; 2 – gas sensor;  

 3 – air quality sensor (E = 0 V; 9 V; 17 V); 4 – isopropyl alcohol, butyl acetate; 5 – gas flow rate in a 

closed system;  6 – Arduino-based  ADC interface module 
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Процесс деградации молекулярных 
газов контролировался с помощью дат-
чика качества воздуха AGS02MA (про-
мышленный MEMS-сенсор ASAIR для из-
мерения TVOC) и анализировался мето-
дом ИК-Фурье-спектроскопии для оценки 
эффективности деградации. В блок-схеме, 
представленной на рисунке 1, показана 
установка, применяемая для изучения сте-
пени деградации молекулярных газов на 
фильтре с композиционными наноплен-
ками.  

В ходе эксперимента капля изопропи-
лового спирта и бутилацетата помещалась 

в сосуд и выдерживалась в течение  
60 мин. По мере испарения капли пары 
газа с помощью вентилятора направля-
лись на композиционные нанопленки, рас-
положенные на фильтре. Деградация мо-
лекул газа регистрировалась с помощью 
датчика качества воздуха при различных 
значениях напряжения (0, 9, 17 В), а  
результаты выводились на экран компью-
тера. Кроме того, деградация молеку- 
лярных газов на фильтре из композицион-
ных нанопленок CNPs/CuO также иссле-
довалась с использованием ИК-Фурье-
спектрометра с газовой ячейкой (рис. 2). 

 
Рис. 2. Блок-схема установки для измерения разложения молекул газа на композиционных 

наноструктурах методом ИК-Фурье-спектроскопии: 1 – композитные пленки на воздушном 

фильтре; 2 – датчик качества воздуха (Е = 0 В; 9 В; 17 В); 3 – изопропиловый спирт, 

бутилацетат; 4 – расход газа в закрытой системе; 5 – ИК-спектроскопия с преобразованием 

Фурье; 6 – газовая кювета 

Fig. 2. Block diagram of the setup for measuring the decomposition of gas molecules on nanocomposite  

 structures using IR Fourier spectroscopy: 1 – composite films on the air filter; 2 – air quality sensor  

(E = 0 V; 9 V; 17 V);  3 – isopropyl alcohol, butyl acetate; 4 – gas flow rate in a closed system; 5 – 

Fourier transform IR spectroscopy; 6 – gas cuvette 

Результаты и их обсуждение 

В процессе электрокатализа прило-
женное напряжение приводит к образова-
нию электрон-дырочных пар в композит-
ной пленке. Эти пары, взаимодействуя с 
растворенными в воздухе молекулами 

воды и кислорода, формируют активные 
формы кислорода, такие как •OH и O2

–, ко-
торые способны разрушать органические 
соединения. Их эффективная деградация 
идёт, например, с применением CuONCs 
[15], допированных никелем нанокатали-
заторов феррита кобальта [16], гибридных 
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полупроводниковых наноматериалов [17], 
нанокомпозитов PVA-CuO [18]: CuO/CNPs %→ '( + ℎ*, (1) 

H�O %→ H* + OH( , (2) 

ℎ* + OH( →  • OH , (3) 

'( + O� → O�(. (4) 

Проведенное исследование с исполь-
зованием ИК-Фурье-спектрометрии под-
твердило деградацию изопропилового 
спирта ((CH3)2CHOH) и бутилацетата 
(CH3COO(C4H9)) до CO2 и паров воды.  

Проходя через воздушную ячейку 
ИК-Фурье-спектрометра, газовые про-
дукты проанализированы и установлены 

продукты конверсии по инфракрас- 
ным полосам поглощения CO2 (дупле- 
ты при 2363 см-1 и 2340 см-1)  
и парам воды (4000–3500 см-1, 2000– 
1400 см-1). Эти продукты могут образовы-
ваться в результате следующей реакции:  C(CH�)�CHOH / CH�COO(C-H.) + + /01 →  CO� + H�O. (5) 

На рисунке 3 представлены спектры 
ИК-Фурье, иллюстрирующие процесс раз-
ложения паров изопропилового спирта 
((CH3)2CHOH) на композитных материа-
лах на основе оксида меди и углеродных 
наноструктур под воздействием внешнего 
электрического поля различной напря-
женности.  

 
Рис. 3. Результаты ИК-Фурье-разложения молекул газа изопропилового спирта на воздушном фильтре 

без композиционных наноструктур (а), с композиционными наноструктурами:  

0 В (б), 9 В (в) и 17 В (г) 

Fig. 3. Results of FTIR decomposition of isopropyl alcohol gas molecules on an air filter without nanocomposite 

 structures (a), with nanocomposite structures: 0 V (б), 9 V (в) and 17 V (г) 

В спектрах контрольной группы 
(спектр а) идентифицированы характери-
стические полосы поглощения [19] моле-
кулы (CH3)2CHOH: 3658 см⁻¹ (валентные 
колебания O-H), 2983 см⁻¹ и 2892 см⁻¹ 
(асимметричные колебания C-H в CH₃-
группах), 1385 см⁻¹ (деформационные ко-

лебания C-H), 1073 см⁻¹ (валентные коле-
бания C-O) [20], 958 см⁻¹ (скелетные коле-
бания углеродной цепи) и 812 см⁻¹  
(валентные колебания C-C) [21]. На спек-
тре, соответствующем композиционному 
наноматериалу без приложения напряже-
ния (см. рис. 3, б), наблюдается значитель-
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ное снижение интенсивности полос погло-
щения исходного соединения. Спектры, 
полученные при напряжениях 9 В (см. 
рис. 3, в) и 17 В (см. рис. 3, г), демонстри-
руют полное исчезновение сигналов изо-
пропилового спирта с одновременным  
появлением новых полос поглощения: 
широкой полосы в области 4000–3500 см⁻¹ 
и сигналов в области 2000–1400 см⁻¹, со-
ответствующих образованию воды, а 
также характерного дублета в районе 
2360–2339 см⁻¹, свидетельствующего о ге-
нерации диоксида углерода. Полученные 
результаты подтверждают эффективность 

протекания электрокаталитического пре-
вращения паров изопропилового спирта в 
воду и углекислый газ на поверхности ги-
бридных наноматериалов при приложе-
нии разности потенциалов. 

На рисунке 4 представлены спектраль-
ные характеристики процесса разложения 
паров бутилацетата (CH3COO(C4H9)) на 
композитных материалах на основе ок-
сида меди и углеродных наночастиц, заре-
гистрированных методом ИК-Фурье-
спектроскопии при различных значениях 
приложенного напряжения. 

 

Рис. 4. Результаты ИК-Фурье разложения молекул газа бутилацетата на воздушном фильтре без  

 композиционных наноструктур (а), с композиционными наноструктурами: 0 В (б), 9 В (в) и 17 В (г) 

Fig. 4. Results of FTIR decomposition of butyl acetate gas molecules on an air filter without nanocomposite  

 structures (a), with nanocomposite structures: 0 V (б), 9 V (в) and 17 V (г) 

Сравнительный анализ проводился 
для системы без каталитического покры-
тия (см. рис. 4) и с композиционными 
наноматериалами при различных потен-
циалах. На контрольном спектре (см. рис. 
4, а) идентифицированы характеристиче-
ские полосы поглощения бутилацетата: 
2974 см⁻¹ и 2886 см⁻¹ (асимметричные ва-
лентные колебания C-H в CH3-группах), 

1765 см⁻¹ (валентные колебания C=O кар-
бонильной группы), 1372 см⁻¹ (деформа-
ционные колебания C-H), 1240 см⁻¹ (ва-
лентные колебания C-C-O) и 1071 см⁻¹ 
(асимметричные колебания C-CH2-C). На 
спектре, полученном при пропускании па-
ров через композиционный наноматериал 
без приложения напряжения (см. рис. 4, б), 
наблюдается снижение интенсивности по-
лос поглощения исходного соединения. 
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Спектры, приведенные на рисунке 4, в–г, 
демонстрируют полное исчезновение сиг-
налов бутилацетата при напряжениях 9 и 
17 В соответственно с одновременным по-
явлением полос поглощения, характерных 
для продуктов полной минерализации: 
широкой полосы в области 4000–3500 см⁻¹ 
и сигналов в области 2000–1400 см⁻¹ 
(вода), а также дублета 2358–2345 см⁻¹ 
(диоксид углерода). Полученные данные 
свидетельствуют об эффективном элек-
трокаталитическом разложении бутилаце-
тата на поверхности наноструктурирован-
ных материалов под действием приложен-
ного электрического поля. 

Пары изопропилового спирта 
((CH3)2CHOH) и бутилацетата 
(CH3COO(C4H9)), полученные испаре-
нием жидкой фазы, пропускались через 
композиционное покрытие на основе ок-
сида меди и углеродных наночастиц, 
нанесенное на поверхность воздушного 
фильтра, в цилиндрической реакционной 

камере с регулируемым потоком, где 
транспортировка газовой среды обеспечи-
валась микродвигателем постоянного тока 
(см. рис. 1).  

На рисунках 5 и 6 представлено раз-
ложение газообразных реагентов, полу-
ченных с использованием высокочувстви-
тельного датчика качества воздуха 
AGS02MA (MEMS-сенсор TVOC произ-
водства ASAIR): а) экспериментальные 
данные контрольного опыта, демонстри-
рующие медленную естественную дегра-
дацию реагентов в отсутствие каталитиче-
ски активного материала; б) кинетика про-
цесса в присутствии композиционных по-
крытий, показывающая значительное уве-
личение скорости разложения в условиях 
замкнутой системы; в, г – результаты ис-
следования влияния цикличного включе-
ния и отключения постоянного напряже-
ния на эффективность разложения паров 
изопропилового спирта и бутилацетата.

 

Рис. 5. Результаты разложения молекул газа изопропилового спирта без композиционных  

наноструктур (а), с композиционными наноструктурами: 0 В (б), 9 В (в) и 17 В (г) –  

с использованием датчика качества воздуха AGS02MA 

Fig. 5. Results of decomposition of isopropyl alcohol gas molecules without nanocomposite structures (a),  

 with nanocomposite structures: 0 V (б), 9 V (в) and 17 V (г) using the AGS02MA air quality sensor
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Рис. 6. Результаты разложения молекул газа бутилацетата без композиционных наноструктур (а),  

с композиционными наноструктурами: 0 В (б), 9 В (в) и 17 В (г) – с использованием датчика 

качества воздуха AGS02MA 

Fig. 6. Results of decomposition of butyl acetate gas molecules without nanocomposite structures (a), with 

nanocomposite structures: 0 V (б), 9 V (в) and 17 V (г) using the AGS02MA air quality sensor 

 

Полученные результаты убедительно 
демонстрируют, что процесс фильтрации 
летучих органических соединений, вклю-
чая изопропиловый спирт и бутилацетат, 
через каталитически активные воздушные 
фильтры с композиционными покрыти-
ями на основе оксида меди и углеродных 
наночастиц при приложении внешнего 
электрического потенциала от 9 В до 17 В 
приводит к их полной минерализации с 
образованием диоксида углерода и паров 
воды. 

Выводы 

1. Приложенное электрическое нап-
ряжение в диапазоне от 9 В до 17 В к ком-
позиционным наноструктурам CNPs/CuO 
значительно повышает эффективность 

разложения летучих органических соеди-
нений изопропилового спирта и бутилаце-
тата, обеспечивая их полную деградацию 
до CO2 и H2O. 

2. Электрокаталитическая активность 
обусловлена генерацией активных форм 
кислорода (•OH, O₂⁻) на поверхности 
нанокомпозитов, что подтверждается дан-
ными ИК-Фурье-спектроскопии и кинети-
ческими измерениями с применением дат-
чика AGS02MA. 

3. Разработанная система демонстри-
рует потенциал для создания энергоэф-
фективных и экологически безопасных 
технологий очистки воздуха от летучих 
органических загрязнителей в промыш-
ленных и медицинских применениях. 
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