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Резюме 

Цель. Комплексное изучение влияния процесса активации на морфологические, структурные и элементные 
характеристики технического углерода для создания функциональных углеродсодержащих материалов с 
заданными свойствами. 
Методы. Морфология поверхности и дисперсность исследованы методом сканирующей электронной мик-
роскопии (JEOL 6610LV, детектор вторичных электронов, 20 кВ, увеличение до ×100 000). Локальный эле-
ментный состав определялся энергодисперсионным анализатором (Oxford Instruments) с картированием 
элементов. Конфокальная лазерная микроскопия (OmegaScope AIST-NT, разрешение до 300 нм) применялась 
для анализа формы, размеров и агрегации частиц. Кристаллохимический анализ проводился методом рент-
генофазового анализа (EMMA, CuKα, λ = 1,5406 Å, диапазон 2θ = 10 – 80°). Структурные дефекты и функци-
ональные группы идентифицировались методом спектроскопии комбинационного рассеяния света (лазер 
λ = 532 нм, спектральное разрешение 3 см-¹). 
Результаты. Установлено, что процесс активации приводит к значительной трансформации структуры 
технического углерода. Наблюдается уменьшение среднего размера частиц с ~3 мкм для пиролизного уг-
лерода до ~2 мкм для активированной формы, сопровождающееся снижением коэффициента полидисперс-
ности с 1,2 до 0,3, что свидетельствует о сужении распределения частиц по размерам. Процесс активации 
обеспечивает равномерное внедрение кремния в углеродную матрицу с достижением концентрации до 
3,2 ат.%, способствуя формированию гомогенной нанокомпозитной структуры углерод – кремнезем. Од-
новременно происходит структурное упорядочение углеродного компонента с достижением параметров, 
характерных для графита c межслоевым расстоянием d002 = 0,3354 нм. 
Заключение. Активация технического углерода позволяет целенаправленно формировать упорядоченные 
углерод-кремнеземные нанокомпозиты с развитой поверхностью и контролируемой дефектностью, пер-
спективные для применения в сорбционных процессах и катализе. 
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Abstract 

Purpose. Comprehensive study of the effect of the activation process on the morphological, structural, and elemental 
characteristics of technical Carbon in order to create functional carbon-containing materials with specified properties. 
Methods. Surface morphology and dispersity were investigated by scanning electron microscopy (JEOL 6610LV, sec-
ondary electron detector, 20 kV, magnification up to ×100,000). Local elemental composition was determined by en-
ergy-dispersive X-ray analysis (Oxford Instruments) with element mapping. Confocal laser microscopy (OmegaScope 
AIST-NT, resolution up to 300 nm) was used to analyze particle shape, size, and aggregation. Crystallochemical anal-
ysis was carried out by the method of rethgenophase analysis of X-ray diffraction (EMMA, CuKα, λ = 1.5406 Å,  
2θ range = 10 – 80°). Structural defects and functional groups were identified by the method of Raman scattering 
spectroscopy (laser λ = 532 nm, spectral resolution 3 cm⁻¹). 
Results. It has been established that the activation process leads to a significant transformation of the technical Carbon 
structure. There is a decrease in the average particle size from ~3 μm for pyrolytic Carbon to ~2 μm for the activated 
form, accompanied by a decrease in the polydispersity coefficient from 1.2 to 0.3, which indicates a narrowing of the 
particle size distribution. The activation process ensures the uniform incorporation of silicon into the Carbon matrix, 
reaching a concentration of up to 3.2 at.%, resulting in the formation of a homogeneous Carbon-silica nanocomposite 
structure. At the same time, the Carbon component is structurally ordered, reaching the parameters characteristic of 
graphite with d002 = 0.3354 nm. 
Conclusion. Activation of technical carbon allows for the purposeful formation of ordered Carbon-silica nanocompo-
sites with a developed surface and controlled defectiveness, which are promising for use in sorption processes and 
catalysis. 
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Введение 

Современные тенденции в материа-
ловедении и химической технологии 
неразрывно связаны с разработкой и при-
менением новых многофункциональных 
материалов, обладающих заданным ком-
плексом свойств [1]. Одним из наиболее 
перспективных направлений в этой обла-
сти является создание и модификация ма-
териалов с использованием углеродных 
наноструктур и функциональных углерод-
содержащих добавок (ФУД) [2]. Особый 
интерес представляют материалы на ос-
нове пиролизного углерода (ПУ), а также 
традиционные, но непрерывно совершен-
ствуемые материалы, такие как техниче-
ский углерод (ТУ) [3]. Технический угле-
род представляет собой высокодисперс-
ный углеродный материал, получаемый 
путем неполного сгорания или термиче-
ского разложения углеводородов [4]. Бла-
годаря уникальному сочетанию физико-
химических свойств [5], в частности, вы-
сокой удельной поверхности, электропро-
водности, адсорбционной способности, 
ТУ находит широкое применение в рези-
нотехнической, лакокрасочной, полимер-
ной промышленности [6], а также в произ-
водстве аккумуляторов и электронных 
устройств [7]. Однако для различных тех-
нологических применений требуются ма-
териалы с определенными характеристи-
ками, что обуславливает необходимость 
детального изучения морфологии и струк-
туры ТУ. Классический ТУ состоит из 
первичных сферических частиц размером 
10–100 нм, агрегирующих в сложные раз-
ветвленные структуры (агрегаты), кото-
рые, в свою очередь, формируют более 
крупные агломераты [8]. Именно эта 
иерархическая структура определяет его 
упрочняющие и проводящие свойства в 
композитах.  

В последние годы особое внимание 
исследователей привлекают модифициро-
ванные формы технического углерода, в 

частности активированные сорта, облада-
ющие повышенной удельной поверхно-
стью и улучшенными адсорбционными 
свойствами [9]. Процесс активации, 
обычно проводимый паром или диокси-
дом углерода при высоких температурах, 
приводит к существенным изменениям 
морфологии частиц, их размерного рас-
пределения и внутренней структуры, что 
требует комплексного подхода к их харак-
теристике. Активация создает развитую 
микропористость, значительно увеличи-
вая удельную поверхность с типичных 50–
150 м²/г до 1000–1500 м²/г и более [10]. 
Это открывает новые области применения 
ТУ, выходящие далеко за рамки упрочня-
ющей добавки, в сферу высокоэффектив-
ной сорбции, катализа и электрохимии. 
Так, исследования в [11] продемонстриро-
вали, что активированный технический 
углерод, полученный из отходов пиролиза 
шин, проявляет исключительную емкость 
по отношению к ионам тяжелых металлов 
(Pb²⁺, Cd²⁺) в водных растворах, что делает 
его перспективным сорбентом для 
очистки сточных вод. Параллельно с раз-
витием технологий модификации ТУ все 
более значимую роль играют материалы 
на основе пиролизного углерода, синтези-
руемого методом CVD [12]. Данная техно-
логия позволяет получать углеродные по-
крытия и матрицы с уникальным сочета-
нием физико-химических характеристик, 
таких как высокая термостабильность, хи-
мическая инертность, регулируемая элек-
тропроводность и исключительная адге-
зия к широкому спектру подложек и 
наполнителей.  

Актуальность создания ФУД на ос-
нове пиролизного углерода и модифици-
рованного технического углерода обу-
словлена их ключевой ролью в высокотех-
нологичных отраслях. В композитах ПУ 
служит интерфасциальным слоем на во-
локнах, предотвращая химическое взаи-
модействие с матрицей и повышая проч-
ность за счет отклонения трещин [13]. 
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Нанокомпозиты полимер – ТУ демонстри-
руют скачкообразное улучшение электро-
проводности и прочности при достижении 
перколяционного порога [14]. В электро-
химии ПУ используется как проводящая 
механически стабильная оболочка для 
анодных материалов в литий-ионных ак-
кумуляторах [15]. Активированный ТУ, 
благодаря развитой поверхности и низкой 
стоимости, применяется как проводящая 
добавка в электродах суперконденсаторов 
и батарей, где оптимальное соотношение 
пор обеспечивает высокую емкость [16]. 

Ключевой особенностью и одновре-
менно главной научно-технической зада-
чей является возможность точного управ-
ления структурой и, как следствие, свой-
ствами как пиролизного углерода, так и 
технического углерода. Морфология и 
микроструктура осаждаемого ПУ (изо-
тропная, анизотропная, ламинарная, сфе-
рулитная, глассированная) критически за-
висят от большого числа параметров 
CVD-процесса: природы и концентрации 
углеродсодержащего прекурсора (метан, 
пропан, ацетилен, толуол и др.), темпера-
туры осаждения, давления в реакторе, вре-
мени процесса и геометрии газовых пото-
ков [17]. Например, низкие температуры 
(800–1100°C) и высокие парциальные дав-
ления углеводородов часто приводят к об-
разованию так называемого «сажеподоб-
ного» изотропного углерода, по структуре 
имеющего сходство с ТУ, в то время как 
более высокие температуры и низкие дав-
ления благоприятствуют формированию 
высокоориентированного слоистого (ла-
минированного) углерода с выраженной 
анизотропией свойств [18]. Аналогично 
свойства ТУ кардинально меняются в за-
висимости от метода производства (печ-
ной, термический, ламповый) и последую-
щей модификации.  

В работе проведен комплексный ана-
лиз качественного состава двух типов уг-
леродных материалов: пиролизного техни-
ческого углерода и печного технического 

углерода, модифицированного путем ак-
тивации добавками. 

Материалы и методы 

В данной работе исследовались два 
типа технического углерода: пиролизный 
(неактивированный) ПТУ и печной (акти-
вированный) – АПТУ. Пиролизный ТУ 
был получен термическим разложением 
природного газа при температурах 1000–
1300°C в инертной атмосфере, тогда как 
печной ТУ подвергался дополнительной 
паровой активации при 800–900°C в при-
сутствии кремнеземного катализатора для 
целенаправленного формирования пори-
стой структуры и модификации поверх-
ностных свойств.  

Для всесторонней морфологической 
и структурно-химической характеристики 
образцов был применен комплекс совре-
менных аналитических методов. Деталь-
ное изучение морфологии поверхности и 
дисперсности осуществляли с помощью 
сканирующей электронной микроскопии 
(СЭМ) на микроскопе JEOL 6610LV с де-
тектором вторичных электронов при уско-
ряющем напряжении 20 кВ и увеличении 
до ×100 000. Локальный элементный со-
став и распределение гетероатомов иссле-
довали методом энергодисперсионной 
рентгеновской спектроскопии (ЭДС) с 
картрированием элементов. Анализ 
формы, размеров и агрегации частиц про-
водили методом конфокальной лазерной 
микроскопии на приборе OmegaScope 
AIST-NT с разрешением до 300 нм. Кри-
сталлохимический анализ и оценку сте-
пени структурной упорядоченности угле-
родной матрицы проводили методом 
рентгенофазового анализа на дифракто-
метре EMMA в CuKα-излучении  
(λ = 1,5406 Å) в диапазоне углов 2θ от 10 
до 80°. Для идентификации функциональ-
ных групп на поверхности и анализа де-
фектности структуры использовали рама-
новскую спектроскопию на конфокальном 
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микроспектрометре с лазерным возбужде-
нием 532 нм и спектральным разреше-
нием 3 см-1, что позволило надежно иден-
тифицировать D- и G-полосы и рассчитать 
параметры структуры материалов. 

Результаты и их обсуждение 

Анализ морфологии порошков, про-
веденный методом сканирующей элек-
тронной микроскопии, выявил существен-
ные различия в структуре исследованных 
образцов технического углерода. 

На представленных микрофотогра-
фиях (рис. 1) визуализированы характер-
ные особенности формы частиц, их разме-
ров и способа агрегации. ПТУ содержит 
высокодисперсные сферические частицы, 
объединенные в разветвленные пластин-
чатые агрегаты, что свидетельствует о 
слоистом механизме роста углерода в про-
цессе пиролиза [19]. Средний размер пер-
вичных частиц составляет ~3 мкм, кото-
рые, в свою очередь, формируют крупные 
агрегаты размером до 50 мкм (рис. 1, а). 

а б 

Рис. 1. СЭМ-изображения поверхности порошка технического углерода: а – ПТУ; б – АПТУ  

Fig. 1. SEM images of the surface of technical carbon powder: a – PTC; б – AFTC 

 
Активация печного углерода способ-

ствовала образованию мелкодисперсного 
материала, состоящего из сферических ча-
стиц со средним размером около 2 мкм, с 
тенденцией к плотной упаковке. Наблю-
дается незначительная агломерация ча-
стиц с формированием вторичных струк-
тур размером до 10 мкм (рис. 1, б). 

Анализ данных энергодисперсионной 
спектроскопии (рис. 2 и 3) выявил значи-
мые различия в элементном составе ПТУ 
и АПТУ. В частности, было обнаружено 

значительное увеличение содержания 
кремния в активированном образце. Дан-
ный факт может быть объяснен техноло-
гическими особенностями процесса акти-
вации, в ходе которого использовался 
кремнеземный активатор. Вероятно, оста-
точные количества соединений кремния 
адсорбировались на поверхности частиц 
углерода в ходе обработки, что и было за-
фиксировано при последующем ЭДС-
анализе. 
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в г 

Рис. 2. СЭМ-изображения пиролизного технического углерода (а) и ЭДС-картирование порошка: 

элемент углерод (С) (б); элемент кислород (О) (в); элемент кремний (Si) (г) 

Fig. 2. SEM images of pyrolyzed carbon black (a) and EDX mapping of the powder: carbon (C) element (б);  

 oxygen (O) element (в); silicon (Si) element (г) 

 

Состоит ПТУ преимущественно из 
углерода (98,7 ат.%) (рис. 2, б) с незначи-
тельными примесями кислорода (рис. 2, в) 
и серы. При этом спектры также демон-
стрируют заметное присутствие хлора и 
кальция: наличие хлора указывает на ис-
пользование хлорсодержащих прекурсо-
ров, а кальция – либо на биогенное проис-
хождение исходного сырья (например, 
костный уголь), либо на введение карбо-
ната кальция (CaCO₃) в качестве мине- 

рального наполнителя для модификации 
свойств конечного продукта. 

В АПТУ содержание углерода снижа-
ется до 89,5 ат. % (рис. 3, б), тогда как кон-
центрация кислорода возрастает до 7,3 ат. % 
(рис. 3, в), а также сильнее проявляется 
кремний (3,2 ат. %) (рис. 3, г). Картирова-
ние элементов показало равномерное рас-
пределение кремния по поверхности ча-
стиц, что объясняется использованием си-
ликата натрия в процессе активации. 

C 

  O                                                              Si   
S

i 
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Рис. 3. СЭМ-изображения печного технического углерода (а) и ЭДС-картирование порошка:  

элемент углерод (С) (б); элемент кислород (О) (в); элемент кремний (Si) (г) 

Fig. 3. SEM images of furnace carbon black (а) and EDX mapping of the powder: carbon (C) element (б); 

 oxygen (O) element (в); silicon (Si) element (г) 

 
На конфокальной микрофотографии 

активированного технического углерода 
(рис. 4) наблюдаются частицы с выражен-
ным полиморфизмом форм. В структуре 
материала доминируют два основных 
морфотипа: частицы овальной формы, 

приближающиеся к сферической геомет-
рии (рис. 4, а) со средним разме- 
ром (4,1±1,7) мкм, и агрегаты неправиль-
ной полиэдрической формы с ярко  
выраженными острыми углами и рёбрами 
(рис. 4, б).

С 

O Si 



Локтионова И.В., Абакумов П.В., Тарасов Л.В. и др.   Структурно-морфологическая трансформация… 115 

Известия Юго-Западного государственного университета. Серия: Техника и технологии /  
Proceedings of the Southwest State University. Series: Engineering and Technologies. 2025;15(3):108–123 

  

а                                                                                     б 

Рис. 4. Изображения с конфокального микроскопа частиц АПТУ с формами: а – овальной;  

б – неправильной  

Fig. 4. Images from a confocal microscope of AFTC particles in the following shapes: a ‒ oval; б – irregular 

 
Коэффициент полидисперсности,  

рассчитанный как отношение среднеквад-
ратичного отклонения размера частиц  
(σ) к среднему диаметру частиц (d):  
PDI = (σ / d)², составил 1,2 для ПТУ, что 
соответствует высокой неоднородности 
системы и PDI = 0,3 для АПТУ с умерен-
ной полидисперсностью. Полученные 
данные свидетельствуют, что процесс ак-
тивации приводит к значительному суже-
нию распределения частиц по размерам, 
что связано с механическим дроблением 
исходных гранул и селективным выжига-
нием аморфных областей, сопровождаю-
щимся образованием агрегатов сложной 
морфологии с развитой поверхностью. 

Рентгенофазовый анализ образца 
ПТУ (рис. 5) показал, что основной ди-
фракционный максимум наблюдается при 
2θ = 29,3°, что указывает на присутствие 
более плотно упакованных или частично 
упорядоченных слоёв углерода, отличаю-
щихся от типичного графитоподобного 
(002)-рефлекса, расположенного около 

26,6° [20]. Такая позиция пика может от-
ражать как изменение межслоевого рас-
стояния в упорядоченных структурах, так 
и указывать на влияние остаточных мине-
ральных включений, обнаруженных в 
ЭДС-анализе. Однако низкая интенсив-
ность и уширение данного пика указы-
вают на слабовыраженную кристаллич-
ность материала и преобладание аморф-
ной фазы.  

Рентгенофазовый анализ АПТУ вы-
явил его смешанный структурный состав 
(рис. 6). Доминирующей фазой остается 
графитоподобный углерод, о чем свиде-
тельствует высокоинтенсивный рефлекс 
(002) при 2θ ≈ 26,2°. Параллельно зафик-
сирован комплекс рефлексов, соответ-
ствующих кристаллическим фазам диок-
сида кремния (SiO₂), идентифицирован-
ных как кварц и/или кристобалит. Присут-
ствие кремнезема является прямым след-
ствием технологического процесса акти-
вации с использованием кремнийсодержа-
щего активатора. 
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Рис. 5. Рентгеновская дифрактограмма порошка ПТУ  

Fig. 5. X-ray diffraction pattern of PTC powder 

 

Рис. 6. Рентгеновская дифрактограмма порошка АПТУ  

Fig. 6. X-ray diffraction pattern of АFTС powder 

Сравнительный анализ дифракто-
грамм свидетельствует, что процесс акти-
вации привел к двум ключевым измене-
ниям: значительному увеличению содер-
жания кристаллического SiO₂ и усилению 
интенсивности углеродного пика (002), 

что указывает на упорядочение углерод-
ной матрицы. Полученные данные полно-
стью коррелируют с результатами энерго-
дисперсионной спектроскопии, подтвер-
дившими повышенное содержание крем-
ния и кислорода в образце АПТУ. 
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Степень графитизации (g), характери-
зующая структурное совершенство угле-
родного материала относительно идеаль-
ного кристалла графита, рассчитывалась 
для АПТУ по формуле 

0020,3440
100%,

0,3440 0,33

( )

( )54

d
g


 


 

где 0,3440 нм ‒ значение межслоевого 
расстояния d002 для полностью неупорядо-
ченного углерода; 0,3354 нм ‒ значение 
d002 для идеального графита. Межслоевое 
расстояние d002 определялось из положе-
ния дифракционного пика (002) с исполь-
зованием уравнения Брэгга – Вульфа 

d002 = λ/2sinθ, 

где λ ‒ длина волны рентгеновского излу-
чения (1,5406 Å для Cu-Kα); θ ‒ положе-
ние пика (002), рад. 

Активированный технический угле-
род показывает степень графитизации 
gАПТУ = 52%, что свидетельствует о струк-
турном упорядочении после активации. 

Детальный расчет и анализ парамет-
ров кристаллической решетки выявил 
наличие трех структурных модификаций, 
относящихся к гексагональной (простран-
ственные группы P6/mmm и P6₃/mmc) и 
ромбоэдрической (Rm3m) сингониям.  

Структура P6/mmm демонстрирует 
параметры решетки a = b = 2,46 Å, 
c = 8,52 Å с отношением c/a ≈ 3,46, что  
характерно для слоистых графитоподоб-
ных материалов с межслоевым расстоя-
нием ∼3,4 Å. Структура P6₃/mmc 
(a = b = 2,46 Å; c = 12,05 Å) показывает 
увеличение параметра c на 41,4% 
(c/a ≈ 4,90), что может свидетельствовать 
о введении дополнительных атомных 
слоев, наличии интеркалированных моле-
кул или изменении типа упаковки с ABAB 
на ABCABC. 

Наиболее аномальные параметры ха-
рактерны для структуры Rm3m 
(a = b = 2,65 Å; c = 24,5 Å, c/a  ≈ 9,25), где 
наблюдается увеличение параметра c в 

2,03 раза по сравнению с P6₃/mmc. Такое 
значительное увеличение периода вдоль 
оси c, сопровождающееся изменением ба-
зисного параметра a, указывает на воз-
можное образование суперструктуры или 
длиннопериодических политипов. 

В ходе рентгеноструктурного анализа 
проведена количественная оценка тек-
стуры материала посредством расчета ко-
эффициентов текстурирования (T) для ос-
новных кристаллографических ориента-
ций. Коэффициент текстурирования опре-
делялся как отношение интенсивности ди-
фракционного максимума, соответствую-
щего определенным индексам Миллера 
(hkl), к суммарной интенсивности всех 
наблюдаемых дифракционных рефлексов: 

T(hkl) = I(hkl) / ΣIᵢ(hkl), 

где I(hkl) ‒ интенсивность пика от плоско-
сти (hkl); ΣIᵢ(hkl) ‒ интегральная интенсив-
ность всех зарегистрированных дифрак-
ционных максимумов. 

Для исходного порошка ПТУ, содер-
жащего фазы с пространственными груп-
пами P6₃/mmc, P6/mmm и Rm3m, распре-
деление коэффициентов текстурирования 
оказалось неоднородным. Наиболее высо-
кий вклад внесла графитоподобная фаза 
P6₃/mmc, для неё значение коэффициента 
составило Y = 521/1001 ≈ 0,52, что свиде-
тельствует о ярко выраженной ориентаци-
онной анизотропии и предпочтительном 
расположении слоёв углерода. Это указы-
вает на наличие протяжённых доменов  
с частично упорядоченной слоистой 
структурой, близкой к графитовой.  
Фаза P6/mmm имела Y = 192/100 ≈ 0,19, 
что отражает низкую степень предпочти-
тельной ориентации и близкое к изо- 
тропному распределение структурных 
фрагментов. Промежуточное значение Y = 288/1001 ≈ 0,28, полученное для фазы 
Rm3m, связано с появлением умеренно 
выраженной текстурированности. Таким 
образом, для ПТУ наблюдается сочетание 
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ориентированных графитоподобных обла-
стей и более изотропных аморфных со-
ставляющих, что придаёт структуре мате-
риала полиморфный характер. 

После паровой активации (АПТУ) 
распределение текстурных характерис- 
тик существенно изменилось. Коэффи- 
циент текстурированности составил Y = 385/1359 ≈ 0,28, что указывает на раз-
рушение крупных ориентированных до-
менов и частичное сохранение лишь 
ближнего порядка. Для аморфной фазы 
P6/mmm, проявляющейся при высоких уг-
лах, коэффициент увеличился до Y = 338/1359 ≈ 0,24, что подтверждает 
усиление изотропного характера распре-
деления кристаллитов и развитие дефект-
ной структуры. Наибольшую текстуриро-
ванность в АПТУ показала фаза Rm3m, 

Y = 636/1359 ≈ 0,46. Это указывает на об-
разование локальных наноструктуриро-
ванных доменов с выраженной ориента-
ционной анизотропией, что может быть 
связано с перегруппировкой углеродных 
фрагментов при высокотемпературной па-
ровой активации. 

Проведенный анализ рамановских 
спектров материалов ПТУ и АПТУ предо-
ставляет детальную информацию о струк-
турно-фазовых преобразованиях, индуци-
рованных процессом активации углерод-
ного материала (рис. 7). В спектрах всех 
исследованных образцов содержатся ха-
рактерные для углеродных материалов 
моды: D-полоса при ∼1350 см-1 и G-по-
лоса при ∼1580 см-1.

 

Рис. 7. Спектр комбинационного рассеивания порошков ТУ 

Fig. 7. Raman scattering spectrum of powders 

D-мода представляет собой запре-
щенное в идеальном графите колебание, 
активируемое наличием дефектов кри-
сталлической решетки [21]. Происхожде-
ние данной полосы связано с комплексом 
структурных дефектов, включая точечные 
и протяженные нарушения кристалличе-
ской решетки, потерю дальнего порядка и 
увеличение дисперсности графеновых 

слоев, краевые дефекты графеновых доме-
нов, а также присутствие аморфной угле-
родной фазы. Качественный анализ спек-
тров выявил существенное увеличение 
интенсивности D-полосы для активиро-
ванного образца, что однозначно свиде-
тельствует о значительном росте концен-
трации структурных дефектов и степени 
разупорядоченности углеродной матрицы 
в результате процесса активации. 
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G-мода соответствует оптическим ко-
лебаниям E2g-симметрии в плоскости гра-
фенового слоя и характеризует упорядо-
ченные sp²-гибридизованные углеродные 
структуры [22]. Наблюдаемое увеличение 
интенсивности этой полосы для активиро-
ванного образца, хотя и менее выражен-
ное по сравнению с D-модой, указывает на 
сохранение базовой графитоподобной 
структуры материала. Данный факт свиде-
тельствует, что процесс активации, при-
внося значительное количество дефектов, 
не приводит к полному разрушению кри-
сталлической структуры углерода. 

Количественная оценка степени 
структурного несовершенства проведена 
на основе расчета интегрального отноше-
ния интенсивностей D- и G-полос (ID/IG). 
Увеличение данного параметра для акти-
вированного образца подтверждает рост 
дефектности структуры. 

Дополнительно в спектрах активиро-
ванного образца идентифицированы по-
лосы в области 400–500 см-1 и ∼1100 см-1, 
соответствующие колебательным модам 
диоксида кремния (SiO₂), что находится в 
полном соответствии с данными РФА и 
ЭДС-анализа и подтверждает формирова-
ние кремнеземных фаз в процессе актива-
ции. 

Таким образом, комплексный анализ 
рамановских спектров достоверно демон-
стрирует, что процесс активации приво-
дит к значительной модификации струк-
туры технического углерода, проявляю-
щейся в увеличении концентрации дефек-
тов кристаллической решетки при сохра-
нении общей графитоподобной организа-
ции материала, а также в образовании до-
полнительных неметаллических включе-
ний в виде диоксида кремния. 

Выводы 

Проведённые исследования позво-
ляют сделать вывод о том, что процесс па-
ровой активации оказывает значительное 

влияние на морфологию, элементный со-
став и структурно-фазовую организацию 
технического углерода. СЭМ выявила, что 
исходный ПТУ характеризуется круп-
ными агрегированными структурами с вы-
раженной слоистой организацией, тогда 
как АПТУ состоит из более мелких и 
плотнее упакованных сферических ча-
стиц, демонстрирующих снижение поли-
дисперсности и усложнение морфологии. 
Энергодисперсионный анализ показал 
значительное увеличение содержания 
кислорода и кремния в АПТУ, что напря-
мую связано с использованием кремне-
земсодержащего активатора и сопровож-
дается перераспределением элементного 
состава поверхности. Рентгенофазовый 
анализ зафиксировал смещение дифрак-
ционного максимума с 2θ = 29,3° в ПТУ до 
26,2° в АПТУ. При этом текстурный ана-
лиз выявил смену доминирующих фаз: 
если в исходном материале преобладала 
графитоподобная структура с выражен-
ной ориентационной анизотропией, то по-
сле активации основной становится Rm3m 
фаза, связанная с формированием локаль-
ных наноструктурированных областей, 
обладающих специфическим типом тек-
стурированности. КРС-спектроскопия 
подтвердила данные рентгеноструктур-
ного анализа: увеличение отношения ID/IG 
для активированного образца свидетель-
ствует о росте концентрации дефектов и 
нарушении дальнего порядка при сохра-
нении общей графитоподобной организа-
ции углеродной матрицы. Дополнительно 
были обнаружены вибрационные моды 
диоксида кремния, что согласуется с ре-
зультатами ЭДС и подтверждает интегра-
цию кремнеземных фаз в структуру угле-
рода. В совокупности эти результаты поз-
воляют заключить, что процесс активации 
сопровождается глубокой перестройкой 
углеродного материала: от разрушения 
крупных ориентированных доменов к 
формированию сложной полиморфной 
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системы, сочетающей аморфные, графи-
топодобные и наноструктурированные 
фрагменты. Такое структурное разнообра-
зие определяет высокую удельную по- 
верхность, развитую пористость и нали-

чие активных центров, что делает активи-
рованный углерод перспективным мате-
риалом для применения в адсорбционных, 
каталитических и электрохимических тех-
нологиях. 
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