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Резюме 

Цель. Контакты металл – полупроводник составляют основу современной твердотельной электроники. 
В представленной работе целью является исследование электрических свойств контактных структур  
Ni-GaAs, полученных электрохимическим методом. Основной задачей являлось изучение влияния типа при-
меси и степени легирования полупроводниковых кристаллов на вольт-амперные характеристики контак-
тов металл – полупроводник. 
Методы. Объектом исследования выбраны никелевые контакты к кристаллическому арсениду галлия, по-
лученные капельным электрохимическим методом. Для практического изготовления контактных струк-
тур металл – полупроводник использовался раствор Уоттса в режиме малых плотностей токов. С помо-
щью сканирующей туннельной микроскопии изучена топография поверхности образованных пленок. Элек-
трические параметры полупроводников определены контактными методами ван дер Пау. Учет сопротив-
ления растекания тока в области контактов учитывался посредством аналитического решения уравне-
ния Лапласа с краевыми условиями Неймана на границах.  
Результаты. Получены и проанализированы экспериментальные ВАХ исследуемых контактов Ni-GaAs. С 
использованием математической модели распределения потенциала в области образцов и эксперимен-
тальных данных вычислены сопротивления контактов никель – арсенид галлия и построены их вольт- 
амперные характеристики. Представлены энергетические модели контактов металл – полупроводник в 
случае невырожденного и вырожденного GaAs, поясняющие электрические свойства полученных структур.  
Заключение. Показано, что полученные контактные структуры Ni-p-GaAs на основе невырожденных полу-
проводников проявляют омические свойства, а вольт-амперные характеристики контактов Ni-n-GaAs 
имеют нелинейную область, характерную для диодов Шотки. Полученные электрохимические контактные 
структуры Ni-GaAs с полупроводниками с различным типом примесей при концентрации носителей выше 
1025 м-3 имеют только линейные вольт-амперные характеристики, то есть проявляются омические свой-
ства.  
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Abstract 

Purpose. Metal-semiconductor contacts form the basis of modern solid-state electronics. In the presented work the 
aim is to study the electrical properties of Ni-GaAs contact structures obtained by electrochemical method. The main 
task was to study the influence of impurity type and doping degree of semiconductor crystals on the current-voltage 
characteristics of metal-semiconductor contacts. 
Methods. The object of the study is nickel contacts to crystalline gallium arsenide obtained by the drop electrochemical 
method. For the practical production of metal-semiconductor contact structures, a Watts solution was used in the low-
current density mode. The surface topography of the formed films was studied using scanning tunnel microscopy. The 
electrical parameters of the semiconductors were determined by Van der Pauw contact methods. The resistance of 
current spreading in the contact region was taken into account by means of an analytical solution of the Laplace equa-
tion with Neumann boundary conditions on the boundaries. 
Results. Experimental current-voltage characteristics of the investigated Ni-GaAs contacts are obtained and analyzed. 
Using a mathematical model of potential distribution in the sample area and experimental data, the resistances of 
nickel-gallium arsenide contacts are calculated and their volt-ampere characteristics are constructed. Energy models 
of metal-semiconductor contacts in the case of non-degenerate and degenerate GaAs are presented, explaining the 
electrical properties of the obtained structures. 
Conclusion. It is shown that the obtained Ni-p-GaAs contact structures based on non-degenerate semiconductors 
exhibit ohmic properties, and the volt-ampere characteristics of the Ni-n-GaAs contacts have a nonlinear region, char-
acteristic of Schottky diodes. The obtained electrochemical contact structures of Ni-GaAs with semiconductors of dif-
ferent types of impurities at a carrier concentration above 1025 m-3 have only linear volt-ampere characteristics, i.e. 
ohmic properties are manifested. 
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Введение 

Контакты металл – полупроводник и 
полупроводников различных типов прово-
димости составляют основу современной 
твердотельной электроники. Несмотря на 
преобладающую роль кремния и структур 
на его основе в современной планарной 
технологии [1], полупроводниковые при-
боры и микроструктуры на основе соеди-
нений A2B5 являются важной частью ма-
териалов для современной высокочастот-
ной электроники и оптоэлектроники [2]. 
При формировании контактных структур 
весьма важны не только свойства полу-
проводника, но и металлического матери-
ала, поэтому современная тенденция кван-
товой электроники, базирующейся на пря-
мозонных полупроводниках, указывает на 
востребованность контактных структур на 
основе материалов Ni-GaAs. В производ-
стве контактов самым распространённым 
способом их создания является метод 
напыления. Ученые и инженеры подробно 
изучили свойства таких контактов в ра-
боте [3]. Проведенные исследования [4] 
подтверждают, что изготовление контак-
тов Ni-p-GaAs по вакуумной технологии, 
приводят к возникновению структур, про-
являющих преимущественно омические 
свойства. В свою очередь, переход Ni-n-
GaAs работает по-иному, он служит осно-
вой для диодов Шоттки и создает одно-
именный потенциальный барьер [5]. Об-
щеизвестный факт, что электрические ха-
рактеристики на границе раздела контакта 
металл – полупроводник имеют прямую 
зависимость не только от элементного со-
става контактирующих материалов, но и 
ряда других важных условий технологии 
получения контакта: первоначальное со-
стояние поверхности полупроводника, 
температурные условия [6], толщина и од-
нородность металлического слоя [7]. Для 
создания качественных Ni контактов на 
поверхности GaAs с управляемыми харак-

теристиками метод металлизации в ваку-
уме не является единственным, хорошо 
известно, что их можно производить по-
средством химического выделения [8], 
электролиза [9] и осаждения пленки из 
расплава [10]. Главным достоинством ме-
тода электрохимической металлизации 
полупроводниковой поверхности в усло-
виях физических лабораторий является 
простота и возможность самостоятельной 
сборки экспериментальной установки, а 
также широкие возможности по управле-
нию толщиной, химическим составом оса-
ждаемого металла и положением никеле-
вой контактной пленки [9]. 

В данной работе приведены резуль-
таты эксперимента по анализу электрофи-
зических свойств контактов металл – по-
лупроводник на основе никеля нанораз-
мерной толщины, осажденного на поверх-
ность GaAs с различным уровнем легиро-
вания примесей.  

Материалы и методы 

Формирование никелевых пленок 
нанометровой толщины на поверхности 
кристаллического арсенида галлия произ-
водилось на установке, реализующей 
электрохимическое осаждение, подробно 
описанной в работе [9], основные компо-
ненты которой показаны на рисунке 1. 
Структуры металл – полупроводник прак-
тически получали методом электролиза 
[11] из раствора Уоттса [12] при малых 
плотностях тока (j ≈ 5 мкА/мм2).  

Осаждение металлического слоя (Ni)  
из солевого раствора на поверхность кри-
сталла GaAs происходило при комнатной 
температуре (20С), электрический ток 
электролиза подавался от источника ста-
билизированного питания HY3005, напря-
жение во внутренней цепи управлялось 
магазином сопротивлений МСР-63, рабо-
чий ток через раствор Уоттса контролиро-
вался микроамперметром Ф135.  
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Рис. 1. Устройство для осаждения металла на поверхность полупроводника  

Fig. 1. A device for depositing metal onto the surface of a semiconductor 

Для практического получения кон-
тактов металл – полупроводник использо-
вались подложки из кристаллического ар-
сенида галлия, выращенные методом Чо-
хральского. Все плоскости сколов кри-
сталлов имели ориентацию (001), (010), 
(100). Для обеспечения минимальной ше-
роховатости подконтактные площадки 
были первоначально отполированы с при-
менением мелкозернистой полировальной 
пасты.  

Формула для расчета толщины нике-
левого контакта 

,
kIt

D
S




                         (1) 

где k = 0,304110-6 кг/Кл – электрохимиче-
ский эквивалент металла (двухвалентный 
Ni); t – время электрохимического осажде-
ния; I – сила подаваемого тока;  ρ = 8902 кг/м3 – плотность объемного Ni;  
S – площадь получаемого контакта металл – 
полупроводник. Активная площадь по-
верхности напыления металла равнялась 
20 мм2 (j = 4,5 мкА/мм2), а сила тока кон-
тролировалась на уровне I = 90 мкА. При 
времени осаждения равном 600 с  
(10 мин) получаем никелевый контакт с 
расчетным значением толщины 92 нм.  

После получения контактов для кон-
троля размеров контактных площадок 

данные пленки визуально наблюдались в 
металлографическом микроскопе «Био-
мед ММР-3» [13]. Для оценки механиче-
ских свойств контактов их поверхности 
исследовались на шероховатость в ре-
жиме силовой туннельной микроскопии 
(СТМ) [14] на микроскопе «Протон» 
СММ-2000 [15]. Параметры шероховато-
стей поверхности вычислялись с помо-
щью автоматизированной программы 
ScanMaster для СММ-2000.  

Результаты и их обсуждение  

Согласно описанной нами методике 
[16], были получены никелевые контакты 
на поверхности полупроводниковых 
восьми образцов, имеющих форму как 
прямоугольных параллелепипедов, так и 
круглых дисков. 

Первоначально были определены па-
раметры шероховатостей поверхности 
контактных структур с помощью про-
граммы ScanMaster. Качественные резуль-
таты сканирования для образцов не отли-
чались, поэтому в таблице 1 отражены ба-
зовые характеристики микрорельефа кри-
сталла арсенида галлия и осажденного ме-
талла только для одного процесса получе-
ния наноконтакта.
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Таблица 1. Базовые характеристики микрорельефа GaAs и Ni. 

Table 1. Basic characteristics of the microrelief of GaAs and Ni. 

Характеристики микрорельефа 
Поверхности 

1  2 3 
Средняя квадратичная шероховатость профиля Rq, нм 32,18 18,80 36,81 
Средняя шероховатость профиля Ra, нм 23,80 14,99 27,05 
Средняя шероховатость по 10 точкам Rz, нм 88,30 71,92 157,3 
Максимальная высота шероховатостей (размах профиля)  
Rmax, нм 

166,9 127,0 197,2 

Средний шаг неровностей (размер зерна) Sm, мкм 1,073 0,732 1,027 
Средний шаг выступов профиля (средняя насечка зерна) S, нм 95,74 61,77 87,35 
Среднеквадратичный локальный наклон Dq 9,1800 8,7230 18,7770 
Средний локальный наклон Da 6,9030 5,9660 10,8550 
Относительная длина профиля L0 1,013 1,011 1,038 

Примечание. Поверхности структур: 1 – полупроводник GaAs до напыления никеля; 
2 – центр осажденной пленки Ni; 3 – рельеф контакта Ni на стыке с полупроводником. 

 
На основе данных таблицы 1 видно, 

что шероховатость поверхности скана 2 
минимальна (в средней области контакта), 
а максимальна для скана 3 (вблизи края 
контакта). Соответственно, можно сде-
лать вывод, что шероховатость возрастает 
вблизи границы пленки и значительно 
уменьшается в средней части. Также вы-
явлено, что в области границы с арсени-
дом галлия шероховатость никеля превы-
шает первоначальное значение. Поэтому 
для практического выделения качествен-
ных однородных по толщине пленок по-
граничные области по периметру образо-
вавшегося контакта частично нужно уда-
лять механически или вытравливать. В 
центральной же части, согласно данным 
сканирования, пленка сглаживает поверх-
ность подложки, именно ее и следует ис-
пользовать в практических целях для со-
здания контактной структуры. 

Первоначально были получены че-
тыре контактные структуры на основе не- 
вырожденных полупроводниковых образ-
цов GaAs. Позиционирование никелевых 

контактных структур на поверхности об-
разцов арсенида галлия показано на ри-
сунке 2 для прямоугольного полупровод-
ника и на рисунке 3 – для образца в форме 
шайбы. Средняя толщина осажденного 
металлического слоя управляемо контро-
лировалась в диапазоне около 90 нм. По-
сле осаждения никеля для подключения 
измерительных устройств поверхность 
полученного металлического контакта из-
начально обрабатывалась ортофосфорной 
кислотой, после чего по аналогичной тех-
нологии на контакт осаждалась медь.  

В нашей установке (рис. 1) произво-
дилась замена никелевого зонда на  
медный и при плотности тока около  
5 мкА/мм2 осуществлялось осаждение 
меди (из 10% раствора медного купороса) 
на поверхность никелевого контакта на 
протяжении 15 мин. Полученная струк-
тура Cu/Ni-GaAs позволяла применять па-
янные контакты на основе припоя ПОС-61 
(температура плавления 180–190С) для 
включения в измерительную цепь.  
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Рис. 2. Позиционирование металлических пленок Ni на прямоугольном полупроводнике 

Fig. 2. Positioning of metal films Ni on a rectangular semiconductor 

 

Рис. 3. Позиционирование металлических пленок Ni на полупроводнике в форме шайбы 

Fig. 3. Positioning of Ni metal films on a puck-shaped semiconductor 

Таблица 2. Параметры полупроводников и контактов (0,05 мм) 

Table 2. Dimensions of prototypes and contacts (±0.05 mm) 

Образец Материал Диаметр  
2R, мм 

Длина  
a, мм 

Ширина 
b, мм 

Толщина  
d, мм 

Контакт  
2e, мм 

1 p-GaAs 
(прямоуг.) 

 8,95 24,00 3,00 2,00 

2 p-GaAs 
(кругл.) 

40,00   2,00 2,00 

3 n-GaAs 
(прямоуг.) 

 17,85 9,05 0,45 2,00 

4 n-GaAs 
(кругл.) 

40,00   0,40 2,00 

 
Теория расчета электрического поля в 

области прямоугольного образца с двумя 
токовыми контактами на его гранях  

(рис. 2) описана в работе [17] и оконча-
тельное выражение для потенциала пред-
ставимо в виде 
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φ(
, =) = 

= − >��?σ A
B − 2π D E(−1)F�G ⋅ sin HπGIB J
HπGIB J

cos HπG=B J
Kℎ HπGLB J Mch PπG(
 − L)B Q − ch HπG
B JRST

FU�,-... V, (2) 

 

где I12 – ток, протекающий через контакты 
1 и 2; σ – удельная электропроводность 
полупроводника. 

Для образца в форме тонкой шайбы 
(рис. 3) с диаметрально противоположно 
расположенными токовыми контактами 
размером 2ed формулу для расчета дву-
мерного электрического потенциала 
удобно представить в полярных координа-
тах (r, ) [17] 
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где  – полярный угол, определяемый со-
гласно рисунку 2.  

Представленные выражения (2), (3) 
позволяют решить задачу расчета о вы-
числении объемного сопротивления полу-
проводника правильной геометрической 
формы, через теоретическую разность 
усредненных потенциалов на токовых 
контактах:  

1 2
12теор

12

.R
I

  
           (4) 

Для полупроводникового образца 
прямоугольной геометрии омическое со-
противление с малыми токовыми метал-
лическими контактами (рис. 4) определя-
ется выражением [18] 

2

12теор
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shn
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                                 (5) 

Для образца в форме тонкой шайбы 
или диска, на поверхности которого диа-
метрально симметрично расположены два 
контакта (рис. 5), омическое сопротивле-
ние определяется формулой [17]:  

2
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Для получения теоретических значе-
ний потенциалов (2) – (3) и сопротивлений  
(5) – (6) с погрешностью меньше 0,1% для 
полупроводниковых приборов и пленок с 
физическими характеристиками, пред- 

ставленными в таблице 2, достаточно ис-
пользовать первые 100 членов соответ-
ствующих рядов. Вольт-амперные харак-
теристики контактов Ni-GaAs измеряли 
при комнатной температуре (≈20 °C) и  
исключении источников фотогенерации 
носителей зарядов. Результаты экспе- 
риментальных исследований ВАХ пока-
заны на рисунках 4 и 5. Выявленные  
электрические характеристики контактов: 
Ni-p-GaAs демонстрирует линейную зави-
симость тока от напряжения и по опреде-
лению является омическим контактом;  
Ni-n-GaAs показывает существенную кон-
тактную разность потенциалов и нелиней-
ность ВАХ при напряжении ниже 1,5 В.
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Рис. 4. Вольт-амперные характеристики образцов 1 и 2 при  Imin = 2,3 мА, Umin = 1,5 мВ  

Fig. 4. Volt-ampere characteristics of samples 1 and 2 at  Imin = 2.3 mA, Umin = 1.5 mV 

 

Рис. 5. Вольт-амперные характеристики образцов 3 и 4 при Imin = 2 мА, Umin = 1,4 мВ 

Fig. 5. Volt-ampere characteristics of samples 3 and 4 at Imin = 2 mA, Umin = 1.4 mV 

 

Для линейных участков ВАХ при по-
мощи программного обеспечения Excel 
была рассчитана достоверность аппрокси-
мации (R²) и стандартные коэффициенты 
зависимостей y = ax + b (табл. 3). Опреде-
ление концентрации носителей заряда вы-
полнено классическим четырехконтакт-
ным методом ван дер Пау [19], холловские 
измерения также позволили определить 
типы проводимости полупроводниковых 

кристаллов GaAs. Удельное сопротивле-
ние было вычислено по линейным участ-
кам вольт-амперных характеристик с при-
менением формул (5) и (6). Для определе-
ния значения холловских разностей по-
тенциалов применялись зонды из воль-
фрама, которые прижимным методом кре-
пились к поверхности полупроводника со-
гласно схемам на рисунках 2 и 3 (контакты 
3, 4). 
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Таблица 3. Измеренные основные электрические параметры образцов 

Table 3. Measured main electrical parameters of the samples 

Образец Материал Ucont, В R12, Ом , (Омм)-1 n, 1015 см-3 d, 10-7 м 

1 
p-GaAs 

(прямоуг.)  
0 21,46 25,26 3,81 3,6 

2 
p-GaAs 

(круглый) 
0 3,29 43,48 53,90 0,9 

3 
n-GaAs 

(прямоуг.)  
1,49 11,20 806,45 6,17 5,0 

4 
n-GaAs 

(круглый) 
1,59 3,53 2027,20 16,10 3,1 

Величина контактной толщины пере-
хода на поверхности металл – полупро-
водник определена в рамках модели рез-
кого перехода [20]: 

0
, 2

2εε ( )
;m c

cont n

c

E E
D

n e


  

0 ,
, 2

2εε ( )
,v F m

cont p

v

E E
D

n e


        (7) 

где nc, nv – концентрация электронов и ды-
рок соответственно; EF,m – уровни Ферми 
металла; Ec, Ev – энергия положительных 
уровней электронной проводимости и ва-
лентных дырок; ε = 13 [20].  

Представленные вольт-амперные ха-
рактеристики электрохимически полу-
ченных контактов указывают на сущест-
венное различие потенциального барьера 
металл – полупроводник для никелевых 
контактов на невырожденных образцах  
n-GaAs и p-GaAs. Для качественного 
пояснения различий ВАХ контактов  
Ni-GaAs от типа проводимости полу-
проводника рассмотрим энергетические 
диаграммы соответствующих структур, на 

основе модели Шоттки – Мотта [21]. На 
рисунках 6 и 7 приведены модели 
идеальных контактов никеля к кристаллам 
n-GaAs и p-GaAs соответственно. При 
построении зонных диаграмм исполь-
зованы следующие стандартные обоз-
начения: EF,m– уровень Ферми металла;  
XS – энергия электронного сродства;  
Фm – работа выхода электрона из металла; 
Eg – ширина запрещенной зоны полупро-
водника; Ec – дно зоны проводимости; 
EF,s,n – уровень Ферми полупроводника  
n-типа; Ev– потолок валентной зоны;  
EF,s,p – уровень Ферми полупроводника  
p-типа; Dcont – ширина области простран-
ственного заряда [21].  

Представленные на рисунках 6, 7 мо-
дели показывают, что в случае контакта 
никеля с полупроводником GaAs элек-
тронного типа проводимости получаем 
потенциальный барьер около 1 эВ, для ды-
рочного GaAs барьер существенно 
меньше – 0,3–0,4 эВ. Соответственно ба-
рьер Ni-p-GaAs может преодолеваться 
электронами с напорядок меньшими зна-
чениями энергий, чем в случае преодоле-
ния барьера Ni-n-GaAs.  
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Рис. 6. Зонная диаграмма контакта Ni-n-GaAs, n-GaAs – невырожденный 

Fig. 6. Zone diagram of the Ni-n-GaAs contact, n-GaAs is non-degenerate 
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Рис. 7. Зонная диаграмма контакта Ni-р-GaAs, p-GaAs – невырожденный 

Fig. 7. Band diagram of the Ni-p-GaAs contact, p-GaAs – non-degenerate 

Высоколегированные (вырожденные) 
полупроводники на основе арсенида гал-
лия обладают высокой подвижностью 
электронов, пониженной чувствительно-
стью к нагреву и большой скоростью пе-
реноса насыщенных электронов [21]. При-
менение высоколегированного полупро-
водника на основе GaAs в полупроводни-
ковых лазерах обусловлено его уникаль-
ной способностью генерации когерент-
ного излучения в широком диапазоне ча-
стот от ИК до УФ [6]. Соответственно, 
представляет научный и практический ин- 

терес исследование свойств магнитных 
контактов Ni к вырожденному GaAs. Со-
гласно известной литературе [21] примес-
ный GaAs является вырожденным при 
концентрации примесей более 1018 см-3.  

По аналогии с предыдущим экспери-
ментом для измерения толщины никеле-
вого покрытия на поверхности вырожден-
ного полупроводника использовалась 
формула (1). Согласно описанной выше 
методике, были получены никелевые кон-
такты с характерным размером 2e = 2 мм. 
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Вырожденные полупроводниковые об-
разцы имели прямоугольную форму, и их 
размеры приведены в таблице 4.  

Для получения экспериментальных 
вольт-амперных характеристик нами про-
ведены измерения на 4 образцах разной 

степени легирования (табл. 4), результаты 
измерений представлены в таблице 5. 
Данные по концентрации носителей тока 
определены на основе измерений ЭДС 
Холла по методу ван дер Пау [19].

Таблица 4. Размеры опытных высоколегированных образцов и электрохимических контактов  

(погрешность 0,05 мм) 

Table 4. Dimensions of experimental high-alloy samples and electrochemical contacts (error 0.05 mm) 

Образец Материал Длина 
a, мм 

Ширина 
b, мм 

Толщина 
d, мм 

Контакт 
2e, мм 

5 n-GaAs 25 15 2,2 2 
6 n-GaAs 37 20,6 5,4 2 
7 p-GaAs 21,1 8,3 2,2 2 

8 p-GaAs 23,7 8,7 2,7 2 

Таблица 5. Измеренные основные электрические параметры структур с вырожденными полупровод-
никами 

Table 5. Measured main electrical parameters of structures with degenerate semiconductors 

Образец материал Ucont, В R12, Ом , (Омм)-1 n, 1025 м-3 Dcont, 10-8 м 

5 n-GaAs 0 0,527 14,37 1,41 1,1 
6 n-GaAs 0 22,1 0,12 0,18 2,9 
7 p-GaAs 0 0,433 4,13 1,56 0,6 
8 p-GaAs 0 0,477 2,85 1,71 0,5 

 

 

Рис. 8. Вольт-амперные характеристики вырожденных образцов p-типа 5 и 6, при Imin = 1 мА,  

             Umin = 1,4 мВ 

Fig. 8. Volt-ampere characteristic of degenerate p-type samples 5 and 6, at Imin = 1 mA, Umin = 1.4 mV 
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Рис. 9. Вольт-амперные характеристики вырожденных образцов n-типа 7 и 8, при Imin = 2,4 мА,  

Umin = 1 мВ  

Fig. 9. Volt-ampere characteristic of degenerate samples of n-type  7 and 8, at Imin = 2.4 mA, Umin = 1 mV 

 

На рисунках 10 и 11 представлены 
зонные диаграммы контактов никеля на по- 

верхности вырожденного полупровод-
ника n- и p-типа соответственно.  

 

Рис. 10. Зонная диаграмма контакта Ni-n-GaAs, n-GaAs – вырожденный 

Fig. 10. Zone diagram of the Ni n-GaAs contact, n-GaAs is degenerate 
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Рис. 11. Зонная диаграмма контакта Ni-р-GaAs, p-GaAs – вырожденный 

Fig. 11. Zone diagram of the Ni-p-GaAs contact, p-GaAs is degenerate 

В сравнении с невырожденным GaAs, 
видно, что для вырожденных полупровод-
ников при концентрации основных носи-
телей более ~1025 м-3 получаем только ли-
нейную область, что свидетельствует о 
высоком качестве контактов металл – по-
лупроводник предложенным в работе ме-
тодом. Для вырожденных полупроводни-
ков n-типа энергия Ферми расположена в 
зоне проводимости, а у полупроводников 
p-типа EF находится в валентной зоне. Ис-
пользование вырожденного полупровод-
ника в структурах Ni-GaAs приводит к су-
щественному понижению контактной раз-
ницы потенциалов, которая оценена нами 
по формуле (8). У используемых нами об-
разцов вырожденных полупроводников 
Dcont  на один порядок меньше, чем у не-
вырожденных, что обуславливает высо-
кую проницаемость контакта металл – вы-
рожденный полупроводник. Согласно по-
лученным экспериментам такой контакт 
можно считать омическим при токах  
> 1 мА и напряжении > 1 мВ. 

Выводы 

Весомую роль в электронике играют 
не только барьерные, но и омические кон-
такты. Главными требованиями к омиче-

ским контактам являются их низкое со-
противление, температурная стабиль-
ность и малая шероховатость поверхно-
сти. Всем перечисленным требованиям 
отвечают несплавные омические кон-
такты, в том числе полученные предло-
женным в работе локально-капельным 
электролитическим методом. Основным 
преимуществом предлагаемого метода 
для научных, учебно-научных и заводских 
лабораторий является возможность созда-
ния контактной структуры в требуемой 
зоне поверхности полупроводника, при 
этом близлежащая область образца не 
нарушается. Капельный электрохимиче-
ский метод изготовления металлических 
наноструктур позволяет создавать  
контакт Ni-GaAs с прогнозируемыми 
свойствами и толщиной металлической 
пленки за счет непрерывности потока оса-
ждения.  

Согласование экспериментальных 
линейных ВАХ для никелевых контактов 
к p-GaAs, полученных капельным элек-
трохимическим методом и теоретической 
модели Шоттки – Мотта, свидетельствует 
о высоком качестве химической чистоты 
границы раздела металл – полупровод- 
ник.  
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Полученная контактная структура  
Ni-n-GaAs для невырожденных материа-
лов имеет нелинейную область при напря-
жениях менее 1,5 В. В свою очередь, при 
повышении концентрации носителей 
более ~1025 м-3 (для вырожденных полу-
проводников) зависимость тока от напря-
жения контакт Ni-n-GaAs проявляет ис-
ключительно линейную зависимость 
ВАХ, при ширине области пространствен- 

ного заряда (Dcont) на порядок меньше, чем 
у невырожденных полупроводников.  

Подводя итог, можно констатировать, 
что используемая в данной работе ло-
кально-капельная технология получения 
никелевых пленок на поверхности арсе-
нида галлия позволяет получать каче-
ственные, однородные омические кон-
такты металл – полупроводник.  
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